Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)
Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k3 = 792 => k3 = 8 => k = 2
=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)
Bài g tương tự bài i
e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)
Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)
Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2
Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)
Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)
Câu a, b, c giống dạng nhau nên mình làm một câu a và câu d thôi nha, bạn tham khảo ^^
Giải:
a) \(a=\dfrac{b}{2}=\dfrac{c}{3}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(a=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a-b+c}{1-2+3}=\dfrac{10}{2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.1=5\\b=2.5=10\\c=3.5=15\end{matrix}\right.\)
b) \(a:b:c=3:4:5\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a^2}{9}=\dfrac{b^2}{16}=\dfrac{c^2}{25}\)
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}=\dfrac{2a^2+2b^2-3c^2}{18+32-75}=\dfrac{-100}{-25}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\dfrac{4.18}{2}=36\\b^2=\dfrac{4.32}{2}=64\\c^2=\dfrac{4.75}{3}=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\pm6\\b=\pm8\\c=\pm10\end{matrix}\right.\)
Gọi \(M=\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(M=\frac{5\left(3a-2b\right)}{25}=\frac{3\left(2c-5a\right)}{9}=\frac{2\left(5b-3c\right)}{4}\)
Áp dụng TC Dãy tỉ số bằng nhau:
\(M=\frac{5\left(3a-2b\right)+3\left(2c-5a\right)+2\left(5b-3c\right)}{25+9+4}\)
\(M=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}\)
\(M=\frac{0}{25+9+4}=0\)
\(\Rightarrow\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\Leftrightarrow\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\Rightarrow}\frac{a}{2}=\frac{b}{3}=\frac{c}{5}}\)
gọi \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=x\Rightarrow\hept{\begin{cases}a=2x\\b=3x\\c=5x\end{cases}}\)
thay vào \(a^2+275=bc\)
\(\left(2x\right)^2+275=3x.5x\)
\(4x^2+275=15x^2\)
\(275=11x^2\)
\(x^2=25\)
Vậy \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
=> \(\hept{\begin{cases}a=10\\b=15\\c=25\end{cases}}\)hoặc \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
Xong :>
P/S: Dấu ngoặc vuông kí hiệu cho "hoặc", ngoặc nhọn kí hiệu cho "và"
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2
a)Vì \(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}\left(1\right)\)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{a}{35}=\frac{b}{30}=\frac{c}{48}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{c}{48}=\frac{a}{35}=\frac{2b}{60}=\frac{c}{48}=\frac{a-2b+c}{35-60+48}=\frac{46}{23}=2\)
\(\Rightarrow\begin{cases}\frac{a}{35}=2\\\frac{b}{30}=2\\\frac{c}{48}=2\end{cases}\)\(\Rightarrow\begin{cases}a=70\\b=60\\c=96\end{cases}\)
Vậy a=70;b=60;c=96
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)\(=\frac{\left(3a-2b\right).5}{5.5}=\frac{\left(2c-5a\right).3}{3.3}=\frac{\left(5b-3c\right).2}{2.2}\) \(=\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)
\(\Rightarrow\frac{3a-2b}{5}=0\Rightarrow3a-2b=0\Rightarrow3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\) (1)
\(\frac{2c-5a}{3}=0\Rightarrow2c-5a=0\Rightarrow2c=5a\Rightarrow\frac{c}{5}=\frac{a}{2}\) (2)
Từ (1) và (2) ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
\(\Rightarrow\frac{a}{2}=-5\Rightarrow a=-10\)
\(\frac{b}{3}=-5\Rightarrow b=-15\)
\(\frac{c}{5}=-5\Rightarrow c=-25\)
\(\Rightarrow\)\(a^{b-c}=\left(-10\right)^{\left(-15\right)-\left(-25\right)}=\left(-10\right)^{10}=10^{10}\)
Bài này chỉ cần đưa về dạng thu gọn, ko cần tính ra kết quả cụ thể bạn nhé.
Ta có :
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(\Leftrightarrow\)\(\frac{5\left(3a-2b\right)}{5.5}=\frac{3\left(2c-5a\right)}{3.3}=\frac{2\left(5b-3c\right)}{2.2}\)
\(\Leftrightarrow\)\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)
Do đó :
\(\frac{3a-2b}{5}=0\)\(\Rightarrow\)\(3a-2b=0\)\(\Rightarrow\)\(3a=2b\)\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}\) \(\left(1\right)\)
\(\frac{2c-5a}{3}=0\)\(\Rightarrow\)\(2c-5a=0\)\(\Rightarrow\)\(2c=5a\)\(\Rightarrow\)\(\frac{c}{5}=\frac{a}{2}\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
Do đó :
\(\frac{a}{2}=-5\)\(\Rightarrow\)\(a=\left(-5\right).2=-10\)
\(\frac{b}{3}=-5\)\(\Rightarrow\)\(b=\left(-5\right).3=-15\)
\(\frac{c}{5}=-5\)\(\Rightarrow\)\(c=\left(-5\right).5=-25\)
Suy ra :
\(a^{b-c}=\left(-10\right)^{-15-25}=\left(-10\right)^{-40}=10^{-40}\)
Vậy \(a^{b-c}=10^{-40}\)
Chúc bạn học tốt ~
Bài 1:
a) Có: 4a = 3b => \(\dfrac{a}{3}=\dfrac{b}{4}\) => \(\dfrac{a}{15}=\dfrac{b}{20}\)
7b = 5c => \(\dfrac{b}{5}=\dfrac{c}{7}\) => \(\dfrac{b}{20}=\dfrac{c}{28}\)
=> \(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}=\dfrac{2a+3b-c}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\left\{{}\begin{matrix}a=45\\b=60\\c=84\end{matrix}\right.\)
b) Tương tự câu a
c) Đặt \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=k\)
=> \(\left\{{}\begin{matrix}a=2k+1\\b=3k+2\\c=4k+3\end{matrix}\right.\)
Mà a - 2b + 3c = 14 => 2k + 1 - 6k - 4 + 12k + 9 = 8k + 6 = 14 => k = 1
=> \(\left\{{}\begin{matrix}a=3\\b=5\\c=7\end{matrix}\right.\)
d) Từ a:b:c = 3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)
=> \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)
Mà 2a2 + 2b2 - 3c2 = -100 => 18k2 + 32k2 - 75k2 = -100 => k2 = 4 => k = \(\pm\)2
Với k = 2 => \(\left\{{}\begin{matrix}a=6\\b=8\\c=10\end{matrix}\right.\)
Với k = -2 => \(\left\{{}\begin{matrix}a=-6\\b=-8\\c=-10\end{matrix}\right.\)
Bài 2:
Nửa chu vi hình chữ nhật là: 90:2 = 45 (m)
Tỉ số giữa chiều dài và chiều rộng = \(\dfrac{2}{3}\)=> chiều rộng = \(\dfrac{2}{5}\) nửa chu vi
=> chiều rộng = 18(m) => chiều dài = 27(m)