Tìm a,b,c biết ax3 + bx2 + c
chia hết cho x-2 và chia cho x2 - 1 thì- dư 2x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
Em tham khảo bài có cách làm tương tự ở link dưới đây:
Câu hỏi của Đặng Tuấn Anh - Toán lớp 9 - Học toán với OnlineMath
\(\dfrac{ax^3+bx^2+c}{x-2}=\dfrac{ax^3-2ax^2+\left(b+2a\right)x^2-2\left(b+2a\right)x+2\left(b+2a\right)x-4\left(b+2a\right)+4b+8a+c}{x-2}\)
=>8a+4b+c=0
\(\dfrac{ax^3+bx^2+c}{x^2-1}\)
\(=\dfrac{ax^3-ax+bx^2-b+ax+b+c}{x^2-1}\)
\(=ax+b+\dfrac{ax+b+c}{x^2-1}\)
=>ax+b+c=2x+5
=>a=2; b+c=5;
8a+4b+c=0
=>4b+c+16=0
=>4b+c=-16
=>b=-7; c=12