Cho tam giác ABC , D là điểm thay đổi nằm giữa A và B. kẻ đường thẳng qua D song song với BC cắt AC tại E.
a, chứng minh rằng \(\frac{S_{BDE}}{S_{ABC}}=\frac{BD.AD}{AB^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>MF=ME
=>M là trung điểm của EF
=>BD=CE
Gọi PH và NF là 2 đường cao của \(\Delta\)BNP; CK và AE lần lượt là đường cao của \(\Delta\)CMP và \(\Delta\)AMN
Xét tứ giác BNMP có: BN // MP; MN // BP => Tứ giác BNMP là hình bình hành
=> MP = BN; MN = BP
Ta có: \(S_{CMP}=\frac{CK.MP}{2};S_{BNP}=\frac{PH.BN}{2}\Rightarrow\frac{S_{CMP}}{S_{BNP}}=\frac{CK}{PH}\)(Do MP = BN) (1)
MP // BN => ^MPC = ^NBC (Đồng vị) Hay ^KPC = ^HBP.
Xét \(\Delta\)CKP và \(\Delta\)PHB có: ^CKP = ^PHB (=900); ^KPC = ^HBP
=> \(\Delta\)CKP ~ \(\Delta\)PHB (g.g)\(\Rightarrow\frac{CK}{PH}=\frac{CP}{PB}\) (2)
Từ (1) và (2) => \(\frac{S_{CMP}}{S_{BNP}}=\frac{CP}{PB}\). Mà \(\frac{CP}{PB}=\frac{CM}{MA}\)(ĐL Thales) \(\Rightarrow\frac{S_{CMP}}{S_{BNP}}=\frac{CM}{MA}\)(*)
Tương tự: \(\frac{S_{BNP}}{S_{AMN}}=\frac{NF}{AE}\). \(\Delta\)AEN ~ \(\Delta\)NFB (g.g) => \(\frac{NF}{AE}=\frac{BN}{NA}\)
\(\Rightarrow\frac{S_{BNP}}{S_{AMN}}=\frac{BN}{NA}=\frac{CM}{MA}\)(ĐL Thales) (**)
Từ (*) và (**) suy ra \(\frac{S_{CMP}}{S_{BNP}}=\frac{S_{BNP}}{S_{AMN}}\Rightarrow\left(S_{BNP}\right)^2=S_{AMN}.S_{CMP}\) (đpcm).
Cứng đờ tay luôn rồi, khổ quá:((
a) Xét \(\Delta DBF\) và \(\Delta FED:\)
DF:cạnh chung
\(\widehat{BDF}=\widehat{EFD}\)(AB//EF)
\(\widehat{BFD}=\widehat{EDF}\)(DE//BC)
=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)
b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)
Ta có: \(\widehat{DAE}+\widehat{AED}+\widehat{EDA}=180^o\) (Tổng 3 góc trong 1 tam giác)
Lại có: \(\widehat{AED}+\widehat{DEF}+\widehat{FEC}=180^o\)
Mà \(\widehat{DEF}=\widehat{EDA}\)(AB//EF)
=>\(\widehat{DAE}=\widehat{FEC}\)
Xét \(\Delta DAE\) và \(\Delta FEC:\)
DA=FE(=BD)
\(\widehat{DAE}=\widehat{EFC}\left(=\widehat{DBF}\right)\)
\(\widehat{DAE}=\widehat{FEC}\) (cmt)
=>\(\Delta DAE=\Delta FEC\left(g-c-g\right)\)
=> DE=FC(2 cạnh t/ứ)
=> Đpcm