K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:undefined

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

Ta có:

$PM\parallel AC$ nên $\widehat{PMB}=\widehat{ACB}$

Mà $\widehat{ACB}=\widehat{ABC}=\widehat{PBM}$ do tam giác $ABC$ cân nên $\widehat{PMB}=\widehat{PBM}$

$\Rightarrow \triangle PBM$ cân tại $P$

$\Rightarrow PB=PM$

Mà $PM=PD$ do tính đối xứng

$\Rightarrow PB=PM=PD$ nên $P$ là tâm đường tròn ngoại tiếp $(DBM)$

$\Rightarrow \widehat{BDM}=\frac{1}{2}\widehat{BPM}$ (tính chất góc nt và góc ở tâm cùng chắn 1 cung)

$=\frac{1}{2}\widehat{BAC}$

Tương tự, $Q$ cũng là tâm ngoại tiếp $(DCM)$

$\Rightarrow \widehat{MDC}=\frac{1}{2}\widehat{MQC}=\frac{1}{2}\widehat{BAC}$ 

Như vậy:

$\widehat{BDC}=\widehat{BDM}+\widehat{MDC}=\widehat{BAC}$

Kéo theo $D\in (ABC)$

Ta có đpcm.

3 tháng 11 2018

a, Chú ý:  A M O ^ = A I O ^ = A N O ^ = 90 0

b,  A M B ^ = M C B ^ = 1 2 s đ M B ⏜

=> DAMB ~ DACM (g.g)

=> Đpcm

c, AMIN nội tiếp => A M N ^ = A I N ^

BE//AM => A M N ^ = B E N ^

=>   B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp =>  B I E ^ = B N M ^

Chứng minh được:  B I E ^ = B C M ^ => IE//CM

d, G là trọng tâm DMBC Þ G Î MI

Gọi K là trung điểm AO Þ MK = IK = 1 2 AO

Từ G kẻ GG'//IK (G' Î MK)

=>  G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O  không đổi   (1)

MG' =  2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)