K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

(a, b)=16, b>a>16 

Đặt a=16 x, b=16y, y>x>1, và (x,y)=1 

[a, b]=560=> x.y.16=560 => x.y=35=1.35=5.7  mà y>x>1

=> y=7 , x=5 => a =112, b=80

AH
Akai Haruma
Giáo viên
30 tháng 6

Bài 1:

Gọi số dư khi chia 346,414,539 cho a là $r$. ĐK: $r< a$

Ta có:

$346-r\vdots a$

$414-r\vdots a$

$539-r\vdots a$

Suy ra:

$539-r-(414-r)\vdots a\Rightarrow 125\vdots a$

$539-r-(346-r)\vdots a\Rightarrow 193\vdots a$

$(414-r)-(346-r)\vdots a\Rightarrow 68\vdots a$

$\Rightarrow a=ƯC(125,193,68)$
$\Rightarrow ƯCLN(125,193,68)\vdots a$

$\Rightarrow 1\vdots a\Rightarrow a=1$

 

AH
Akai Haruma
Giáo viên
30 tháng 6

Bài 2:

Vì $ƯCLN(a,b)=16$ nên đặt $a=16x, b=16y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.

Ta có:

$a+b=16x+16y=128$

$\Rightarrow x+y=8$

Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (7,1)$

$\Rightarrow (a,b)=(16, 112), (48,80), (80,48), (112,16)$

26 tháng 11 2021

em thấy cj Trà My lm đúng á

20 tháng 12 2014

vi Ư của a , b = 16 => a = 16n và b = 16m

ta có 16n + 16m = 128 <=> 16 ( n + m ) = 128

                                     <=>  n + m = 128 : 16 = 8

ta có các trường hợp : n =1 ; m =7 => a = 16 ; b = 112

                                    n = 2 ; m = 6  loại vì ( a, b )= 32

                                    n = 3 ; m = 5 => a = 48 ; b = 80

                                    n = 4 ; m = 4 ( loại )

vậy nếu a = 16 , b = 112 và ngược lại

      nếu a = 48 , b = 80  và ngược lại

21 tháng 1 2019

thiếu trường hợp 8 và 0,0 và8

28 tháng 11 2021

Vì ƯCLN ( a;b )=1\(\left\{{}\begin{matrix}a=16.m\\b=16.n\end{matrix}\right.\) ( m;n ∈ \(N\));(m;n)=1

Ta có : a+b=128

⇔ 16.m + 16.n = 128

⇔ 16.(m+n) = 128

⇔ m + n =128 : 16 = 8

Mà (m+n)=1⇔\(\left\{{}\begin{matrix}m=3\\n=5\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}m=7\\n=1\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}m=5\\n=3\end{matrix}\right.\)

Các cặp giá trị (a;b)tương ứng là ( 16;11;12 ) ; (48;80 ) ; ( 112;16 ) ;(80;48 )

16 tháng 7 2021

ƯCLN\(\left(a,b\right)=16=>\)\(a=16x,b=16y\)\(\left(a,b\in N,a,b>0\right)\)

\(=>a.b=1536=>16x.16y=1536=>xy=6\)

\(=>xy=6=2.3=3.2=1.6=6.1\)

vậy \(\left(x;y\right)\in\left\{\left(2;3\right)\left(3;2\right)\left(1;6\right)\left(6;1\right)\right\}\)

15 tháng 10 2019

Theo bài ra ta có : 

BCNN(a,b) . ƯCLN(a;b) = a.b

=> 16.ƯCLN(a;b) = 32

=> ƯCLN(a;b) = 2

Khi đó \(\hept{\begin{cases}a=2n\\b=2m\end{cases}\left(n;m\inℕ^∗\right)}\)

Mà ab = 32

<=> 2n.2m = 32

=> 4.nm = 32

=> nm = 8

Lại có 8 = 1.8 = 2.4

=> Lập bảng xét các trường hợp ta có : 

m1824
n8142
a1628(loại)4(loại)
b2164(loại)8(loại)

Vậy 2 cặp số (a;b) thỏa mãn là (2;16) ; (16;2)

23 tháng 11 2015

hai số đó là 40 và 120 nếu bạn tick mình sẽ có lời giải cho bạn

6 tháng 12 2014

ƯCLN(a,b) = 16 \(\Rightarrow\) a = 16p ; b = 16q, với (p,q) = 1

Từ gt a + b = 128 \(\Rightarrow\) 16p + 16q = 128 hay p + q = 8 = 1 + 7 = 3 + 5 

Từ đó suy ra a, b nhé bạn.

6 tháng 12 2014

Vì ƯCLN (a,b) = 16 nên a= 16a1

                                   b= 16b1

(a1, b1) = 1; a1, b\(\in\)N*

Mà a+b = 128 nên thay a= 16a1b= 16bta có:

 16a1 + 16b= 128

16 (a1 + b1) = 128

a1 + b1 = 128 : 16

a1 + b= 8

Sau đó vẽ bảng thử chọn ra a, b <cái này tự làm nhé>, nhớ căn cứ vào (a1, b1) = 1 để thử chọn.