Tìm các số nguyên x,y thỏa mãn: \((y+2)x^{2017} -y^2 -2y -1=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(y+2\right)x^{2017}-y^2-2y-1=0\)
\(\Leftrightarrow x^{2017}=\frac{y^2+2y+1}{y+2}\)
\(\Leftrightarrow x^{2017}=y+\frac{1}{y+2}\)
Để vế phải là số nguyên thì y+2 phải là ước của 1
\(\Leftrightarrow\orbr{\begin{cases}y+2=-1\\y+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=-3\\y=-1\end{cases}}\)
TH1: \(y=-3\Rightarrow x^{2017}=-4\)
Ta thấy x không phải là số nguyên
TH2: \(y=-1\Rightarrow x^{2017}=0\Rightarrow x=0\)
Vậy phương trình có cặp nghiệm (x,y) nguyên thỏa mãn là (0;-1)
\(x^2-\left(y-3\right)x-2y-1=0\)
\(\Leftrightarrow y\left(x+2\right)=x^2+3x-1\)
Dễ thây \(x\ne-2\)
\(\Rightarrow y=\frac{x^2+3x-1}{x+2}=x+1-\frac{3}{x+2}\)
Để y nguyên thì x + 2 là ươc của 3 hay
\(\left(x+2\right)=\left\{-3;-1;1;3\right\}\)
\(x^2-\left(y-3\right)x-2y-1=0\)
\(\Leftrightarrow x^2-xy+3x-2y-1=0\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(2x-2y\right)+x-1=0\)
\(\Leftrightarrow x\left(x-y\right)+2\left(x-y\right)+\left(x+2\right)-3=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-y\right)+\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(x-y+1\right)=3\)
Ta có x, y \(\in\) Z nên x + 2 là ước của 3 \(\Rightarrow x+2\in\left\{1;3;-1;-3\right\}\). Ta có bảng sau:
x + 2 | x - y + 1 | x | y |
1 | 3 | -1 | -3 |
3 | 1 | 1 | 1 |
-1 | -3 | -3 | 1 |
-3 | -1 | -5 | -3 |