K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath tham khảo

6 tháng 7 2017

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{\left(a+b\right)}\) Dề ntn thế này mới chuẩn >:

12 tháng 7 2018

Ta có: \(x^2+y^2=1\Leftrightarrow\left(x^2+y^2\right)^2=1\)  (1)

Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) ta được:

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right)ab\)

\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)

\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)

\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)

\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)

\(\Leftrightarrow x^2b-y^2a=0\)

\(\Leftrightarrow x^2b=y^2a\)

\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\left(\frac{x^2}{a}\right)^{1009}=\left(\frac{y^2}{b}\right)^{1009}=\left(\frac{1}{a+b}\right)^{1009}\)

\(\Rightarrow\frac{x^{2018}}{a^{1009}}=\frac{y^{2018}}{b^{1009}}=\frac{1}{\left(a+b\right)^{1009}}\)

\(\Rightarrow\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1009}}=\frac{1}{\left(a+b\right)^{1009}}+\frac{1}{\left(a+b\right)^{1009}}=\frac{2}{\left(a+b\right)^{1009}}\left(đpcm\right)\)

4 tháng 8 2019

đè bài của t sái

25 tháng 8 2020

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow a^{2018}+b^{2018}+c^{2018}\ge\left(ab\right)^{1009}+\left(bc\right)^{1009}+\left(ca\right)^{1009}\)

Dấu = xảy ra \(\Leftrightarrow a=b=c\)

Mà đẳng thức trên xảy ra dấu =

\(\Leftrightarrow a=b=c\Leftrightarrow P=0\)

Bài kia tí nghĩ nốt, khó v

26 tháng 8 2020

Sửa đề em nhé: \(\frac{2}{ab}-\frac{1}{c^2}=4\) và tính \(a+b+2c\)

Có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ca}+4=4\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-c\\b=-c\end{cases}}\)\(\Leftrightarrow a+b+2c=0\)

24 tháng 3 2020

Tham khảo:Simple inequality

30 tháng 3 2020

Ta có \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)

Xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)

<=> \(x^3\ge\left(2018^2-2.2018.x+x^2\right)\left(x-\frac{1009}{2}\right)\)

<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2018.2\right)+x\left(2018.1009+2018^2\right)-\frac{2018^2.1009}{2}\)

<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)

<=> \(\frac{9081}{2}\left(x^2-\frac{2.2018}{3}.x+\left(\frac{2018}{3}\right)^2\right)\ge0\)

<=> \(\frac{9081}{2}\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)

=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)

Khi đó \(VT\ge x-\frac{1009}{2}+y-\frac{1009}{2}+z-\frac{1009}{2}=2018-\frac{3}{2}.1009=\frac{1009}{2}\)(ĐPCM)

Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)

30 tháng 3 2020

Ta có : \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)

xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)

<=> \(x^3\ge\left(x^2-2.2018.x+2018^2\right)\left(x-\frac{1009}{2}\right)\)

<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2.2018\right)+x\left(2018^2+1009.2018\right)-\frac{2018^2.1009}{2}\ge0\)

<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)

<=> \(\frac{9081}{2}.\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)

=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)

Khi đó \(P\ge x+y+z-\frac{3.1009}{2}=\frac{1009}{2}\)(ĐPCM)

Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)

31 tháng 10 2018

Làm bài 1 thui nhé, mấy bài kia dễ tự làm -,- 

\(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2017^2}\)

\(A< \frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}=\frac{1}{2}\left(\frac{1}{2}-\frac{2}{2017}\right)< \frac{1}{2}\left(\frac{1}{2}-\frac{2}{2018}\right)=\frac{1}{2}.\frac{1007}{2018}\)

\(\Rightarrow\)\(2A< \frac{1007}{2018}< \frac{1008}{2018}=\frac{504}{1009}\)\(\Rightarrow\)\(A< \frac{504}{1009}\)

Vậy \(A< \frac{504}{1009}\)

Chúc bạn học tốt ~