Chứng minh rằng \(\forall\)n\(\ge\)2( n\(\in\)N) thì
A=cmr 1/2^2+1/3^2+...+1/n^2 <2/3 với n>=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)
a: \(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)
Ta có:24n+2+1
=(24)n x 4+1
=16n x 4+1
=(.....6)x 4+1
=(......4)+1=(.....5)
Vì 24n+2có chữ số tận cùng là 5 nên 24n+2chia hết cho 5 với mọi n
Ta có :
\(2^{4n+2}=4^{2n+1}=\left(5-1\right)^{2n+1}\overline{=}-1\left(mod5\right)\)
\(\Rightarrow2^{4n+2}+1\overline{=}\left(-1\right)+1=0\left(mod5\right)\)
Hay \(2^{4n+2}+1⋮5\) (đpcm)
34n + 1 + 2 = 34n.3 + 2 = (34)n.3 + 2 = (...1)n.3 + 2 = (...1).3 + 2 = (...3) +2 = (....5)
Vì 34n + 1 + 2 có chữ số tận cùng là 5 nên 34n +1 + 2 \(⋮\)5
Ta có: \(3^{4n+1}+2=3^{4n}.3+2\)mà \(3^{4n}\) có chữ số tận cùng là 1
=> \(3^{4n}.3+2=\left(...1\right).3+2\)
\(=\left(...5\right)⋮5\forall n\in N\)
a,B=(10n-1)+(27n-9n)
B=999..9+27n - 9n (n chữ số 9)
B=9.(111..1-n)+27n (n chữ số 1)
Vì 111..1(n chữ số 1) và n cùng dư trong phép chia cho 3
=>111..1-1 (n chữ số 1) ⋮ 3
=>9.(111..1-n) ⋮ 9 . 3 =27
mà 27 n ⋮ 27
=> 9.(111..11 - n)+27n ⋮ 27
=>B ⋮ 27
nhanh lên giùm
câu này khó quá