Cho tam giác ABC ( góc A > 90o) I là TD của AC. Trên tia đối tia IB lấy điểm D sao cho IB = ID
a. CMR:AB = CD và AB//CD
b. Gọi M là trung điểm của BC, N là trung điểm của AD. CMR M,I,N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/54773135540.html tham khảo tại link này nhé !
a: Xét tứ giác ABCD có
I là trung điểm của đường chéo AC
I là trung điểm của đường chéo BD
Do đó: ABCD là hình bình hành
b: Xét tứ giác AKCH có
I là trung điểm của đường chéo AC
I là trung điểm của đường chéo KH
Do đó: AKCH là hình bình hành
Suy ra: AK=HC
a: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hìnhbình hành
=>AB//CD; AB=CD
b: Xét tứ giác CMAN có
CM//AN
CM=AN
Do đó: CMAN là hình bình hành
=>CA cắt MN tại trung điểm của mỗi đường
=>M,I,N thẳng hàng
a.Xét tam giác AIBAIB và tam giác CIDCID có:
IA=ICIA=IC ( gt )
Góc CIDCID = Góc AIBAIB (ĐỐI ĐỈNH)
ID=IBID=IB ( gt )
⇒Tam giác AIBAIB = Tam giác CIDCID
b.Ta có Tam giác ABIABI = tam giác CDICDI
nên khoảng cách trung tuyến của MIMI và NINI đều bằng nhau.
⇒ II là trung điểm của đoạn MN.MN.
c.Xét góc AIBAIB và góc BICBIC ta có:
IA<ICIA<IC ( gt )
Góc BICBIC > Góc AIBAIB
IC>IBIC>IB ( gt )
⇒Góc AIBAIB < góc BICBIC
d.Điều kiện : Góc AA = 90o
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC