cho abcd=1. Tính P5=∑a/(abc+ab+a+a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)
1.
\(\overrightarrow{AB}.\overrightarrow{BC}=\overrightarrow{AB}.\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\overrightarrow{AB}.\left(-\overrightarrow{AB}\right)+\overrightarrow{AB}.\overrightarrow{AC}=-AB^2=-25\)
2.
\(\overrightarrow{AB}.\overrightarrow{BD}=\overrightarrow{AB}\left(\overrightarrow{BA}+\overrightarrow{AD}\right)=-\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{AB}.\overrightarrow{AD}=-AB^2+0=-64\)
1.
\(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\left(pytago\right)\)
Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=3,2\left(cm\right)\\AH=\sqrt{3,2\cdot1,8}=5,76\left(cm\right)\end{matrix}\right.\)
2.
Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC=HC\\AB^2=BH\cdot BC=BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=4\left(cm\right)\\AB=\sqrt{HC+HB}=\sqrt{4+1}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-5}=2\sqrt{5}\left(cm\right)\)
Vậy \(AB=\sqrt{5}\left(cm\right);BC=5\left(cm\right);AC=2\sqrt{5}\left(cm\right)\)
Bài 5:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
\(2,\)
Kẻ BH vuông góc với CD tại H
Xét hai tam giác BDH và BCH:
+) BH là cạnh chung
+) Góc BHD = góc BHC = 90 độ
+) DH = CH
=> Tam giác BDH = tam giác HCH (c.g.c)
=> BD = BC
Khác: DC = BC
=> BC = CD = DB => Tam giác BCD đều => Góc C = 60 độ
Mà: AB // CD => Góc B + góc C = 180 độ => Góc B = góc ABC = 180 độ - 60 độ = 120 độ
a) Ta thấy \(\overrightarrow{AB}\left(3;2\right)\) và \(\overrightarrow{AC}\left(4;-3\right)\). Vì \(\dfrac{3}{4}\ne\dfrac{2}{-3}\) nên A, B, C không thẳng hàng.
b) Ta có \(\overrightarrow{BC}\left(1;-5\right)\)
Do vậy \(AB=\left|\overrightarrow{AB}\right|=\sqrt{3^2+2^2}=\sqrt{13}\)
\(AC=\left|\overrightarrow{AC}\right|=\sqrt{4^2+\left(-3\right)^2}=5\)
\(BC=\left|\overrightarrow{BC}\right|=\sqrt{1^2+\left(-5\right)^2}=\sqrt{26}\)
\(\Rightarrow C_{ABC}=AB+AC+BC=5+\sqrt{13}+\sqrt{26}\)
c) Gọi M, N, P lần lượt là trung điểm BC, CA, AB.
\(\Rightarrow P=\left(\dfrac{x_A+x_B}{2};\dfrac{y_A+y_B}{2}\right)=\left(-\dfrac{3}{2};3\right)\)
\(N=\left(\dfrac{x_A+x_C}{2};\dfrac{y_A+y_C}{2}\right)=\left(-1;\dfrac{1}{2}\right)\)
\(M=\left(\dfrac{x_B+x_C}{2};\dfrac{y_B+y_C}{2}\right)=\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)
d) Gọi G là trọng tâm tam giác ABC thì \(G=\left(\dfrac{x_A+x_B+x_C}{3};\dfrac{y_A+y_B+y_C}{3}\right)=\left(-\dfrac{2}{3};\dfrac{5}{3}\right)\)
e) Gọi \(D\left(x_D;y_D\right)\) là điểm thỏa mãn ycbt.
Để ABCD là hình bình hành thì \(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow\left(3;2\right)=\left(1-x_D;-1-y_D\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=1-x_D\\2=-1-y_D\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=-3\end{matrix}\right.\)
\(\Rightarrow D\left(-2;-3\right)\)
f) Bạn xem lại đề nhé.
a: A(2;1); B(-2;5); C(-5;2)
Tọa độ vecto AB là:
\(\left\{{}\begin{matrix}x=-2-2=-4\\y=5-1=4\end{matrix}\right.\)
Vậy: \(\overrightarrow{AB}=\left(-4;4\right)\)
Tọa độ vecto AC là:
\(\left\{{}\begin{matrix}x=-5-2=-7\\y=2-1=1\end{matrix}\right.\)
Vậy: \(\overrightarrow{AC}=\left(-7;1\right)\)
Tọa độ vecto BC là:
\(\left\{{}\begin{matrix}x=-5-\left(-2\right)=-5+2=-3\\y=2-5=-3\end{matrix}\right.\)
Vậy: \(\overrightarrow{BC}=\left(-3;-3\right)\)
b: \(\overrightarrow{AB}=\left(-4;4\right);\overrightarrow{AC}=\left(-7;1\right);\overrightarrow{BC}=\left(-3;-3\right)\)
\(AB=\sqrt{\left(-4\right)^2+4^2}=4\sqrt{2}\)
\(AC=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)
\(BC=\sqrt{\left(-3\right)^2+\left(-3\right)^2}=3\sqrt{2}\)
Chu vi ΔABC là:
\(5\sqrt{2}+4\sqrt{2}+3\sqrt{2}=12\sqrt{2}\)
Vì \(AC^2=BA^2+BC^2\)
nên ΔABC vuông tại B
c: tọa độ I là:
\(\left\{{}\begin{matrix}x=\dfrac{2+\left(-2\right)}{2}=0\\y=\dfrac{1+5}{2}=\dfrac{6}{2}=3\end{matrix}\right.\)
Vậy: I(0;3)
d: Tọa độ trọng tâm G của ΔABC là:
\(\left\{{}\begin{matrix}x=\dfrac{2+\left(-2\right)+\left(-5\right)}{3}=-\dfrac{5}{3}\\y=\dfrac{1+5+2}{3}=\dfrac{8}{3}\end{matrix}\right.\)
e: ABCD là hình bình hành
=>\(\overrightarrow{AB}=\overrightarrow{DC}\)
mà \(\overrightarrow{AB}=\left(-4;4\right);\overrightarrow{DC}=\left(-5-x;2-y\right)\)
nên \(\left\{{}\begin{matrix}-5-x=-4\\2-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=4\\y=2-4=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Vậy: D(-1;-2)
=\(\frac{a}{abc+ab+a+1.}+\frac{b}{bcd+bc+b+1}+\frac{c}{cda+cd+c+1}+\frac{d}{dab+da+d+1}\)
=\(\frac{a.d}{abc.d+ab.d+a.d+1.d}+\frac{b.ad}{bcd.ad+bc.ad+b.ad+1.ad}+\frac{c.abd}{cda.abd+cd.abd+c.abd+1.abd}\)\(+\frac{d}{dab+da+d+1}\)
=\(\frac{ad}{dab+da+d+1}+\frac{abd}{dab+da+d+1}+\frac{1}{dab+da+d+1}+\frac{d}{dab+da+d+1}\)
=\(\frac{abd+ad+d+1}{dab+da+d+1}\)=1