K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2022

\(A=x^2-2x+1+x^2-4x+4\)

\(=2x^2-6x+5\)

\(=2\left(x^2-3x+\dfrac{5}{2}\right)\)

\(=2\left(x^2-3x+\dfrac{9}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\)

Dấu = xảy ra khi x=3/2

27 tháng 10 2022

I:
a: \(=x^2-2x+1+x^2-4x+4\)

\(=2x^2-6x+5\)

\(=2\left(x^2-3x+\dfrac{5}{2}\right)\)

\(=2\left(x^2-3x+\dfrac{9}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\)

Dấu = xảy ra khi x=3/2

b: \(=-4\left(x^2-2x+\dfrac{3}{4}\right)\)

\(=-4\left(x^2-2x+1-\dfrac{1}{4}\right)=-4\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

28 tháng 7 2016

\(B=4y^2+4y+5\)

\(=\left[\left(2y\right)^2+2.2y.1+1^2\right]+4\)

Vậy \(\left(2y+1\right)^2\ge0\)

\(\Rightarrow\left(2y+1\right)^2+4\ge4\)

Vậy GTNN là 4

Khi x = -1/2

16 tháng 6 2018

1: \(B=4y^2+4y+5=\left(2y\right)^2+2\cdot y\cdot2+2^2+1=\left(2y+2\right)^2+1\)

Để B min 

Suy ra \(\left(2y+2\right)^2+1\)min

Mà \(\left(2y+2\right)^2\ge0\)

Suy ra \(\left(2y+2\right)^2+1\ge1\)

Vậy B min = 1

2: \(M=-x^2-4x=-x^2-2\cdot x\cdot2-4+4=-\left(x^2+2\cdot x\cdot2+2^2\right)+4=-\left(x+2\right)^2+4\)

Để M max

Suy ra \(-\left(x+2\right)^2+4\)max

Mà \(-\left(x+2\right)^2\le0\)

Suy ra\(-\left(x+2\right)^2+4\text{​​}\le4\)

Vậy M max = 4

8 tháng 3 2017

2.

a)4x-xy+2y=10

x(4-y)-2(4-y)=2

(4-y).(x-2)=2

mà 2=(-1).(-2)=1.2

=>(4-y,x-2)={(-1,-2);(1,2);(-2,-1):(2,1)}

Còn lại bạn kẻ bảng rồi tính nhé.

Câu b tương tự.

13 tháng 10 2019

\(x^2+y^2+z^2=4x-2y+6z-14\)

\(\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\\z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}}\)

\(\Leftrightarrow\) \(x^2\)+    \(y^2\) +     \(z^2\) -    \(4x\)+      \(2y\) -      \(6z\) +    \(14\) \(=\) \(0\)

\(\Leftrightarrow\) (  \(x^2\) -     \(4x\) +    \(4\)  )   +      (   \(y^2\) +    \(2y\) +     \(1\) )   \(=\) \(0\)

\(\Leftrightarrow\) (  \(x-2\))2   +   \(\left(y+1\right)^2\) +    \(\left(z-3\right)^2\) \(=\) \(0\)

\(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}\)