K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

\(\sin^6a+\cos^6a+3\sin^2a-\cos^2a\\ =\sin^6a+3\sin^2\cos^2\left(\sin^2a+\cos^2a\right)+\cos^6a-3\sin^2a\cos^2a\left(\sin^2a+\cos^2a\right)+3\sin^2a-\cos^2a\\ =\left(\sin^2a+\cos^2a\right)^3-3\sin^2a.\cos^2a.1+3\sin^2a-cos^2a\\ =1^3-\cos^2a+3\sin^2a-3\sin^2\cos^2\\ =\left(1-\cos^2a\right)\left(3\sin^2a+1\right)\)

7 tháng 9 2016

\(A=sin^6\alpha+cos^6\alpha+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha\right)^3+\left(cos^2\alpha\right)^3+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha\right)+3sin^2\alpha-cos^2\alpha\)

\(=sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)^2-2sin^2\alpha.cos^2\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(1-3sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha=3sin^2\alpha\left(1-cos^2\alpha\right)+\left(1-cos^2\alpha\right)\)

\(=\left(3sin^2\alpha+1\right).sin^2\alpha=0\)

2 tháng 1 2022

\(sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha-sin^2\alpha.cos^2\alpha+cos^4\alpha\right)+3sin^2\alpha.cos^2\alpha\)

\(=sin^4\alpha+2sin^2\alpha.cos^2\alpha+cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)^2=1^2=1\)

9 tháng 11 2017

Đặt \(\sin^2\alpha=x\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)

\(A=x^3+\left(1-x\right)^3+3x-\left(1-x\right)=x^3+1-3x+3x^2-x^3+3x-1+x=3x^2+x\)

Vậy \(A=3\sin^4\alpha+\sin^2\alpha\). NHỚ NHA!

25 tháng 7 2023

\(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=4\\ VT=\dfrac{sin^2a+2sinacosa+cos^2a-sin^2a+2sinacosa-cos^2a}{sinacosa}\\ =\dfrac{4sinacosa}{sinacosa}=4=VP\)

a: \(S=cos^2a\left(1+tan^2a\right)=cos^2a\cdot\dfrac{1}{cos^2a}=1\)

b: \(VP=\dfrac{1+sin2a-1+sin2a}{\dfrac{1}{2}\cdot sin2a}=\dfrac{2\cdot sin2a}{\dfrac{1}{2}\cdot sin2a}=4=VT\)

NV
27 tháng 1 2021

\(A=\dfrac{cos^2a-sin^2a}{\dfrac{cos^2a}{sin^2a}-\dfrac{sin^2a}{cos^2a}}-cos^2a=\dfrac{cos^2a.sin^2a\left(cos^2a-sin^2a\right)}{\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)}-cos^2a\)

\(=cos^2a.sin^2a-cos^2a=cos^2a\left(sin^2a-1\right)=-cos^4a\)

\(B=\sqrt{\left(1-cos^2a\right)^2+6cos^2a+3cos^4a}+\sqrt{\left(1-sin^2a\right)^2+6sin^2a+3sin^4a}\)

\(=\sqrt{4cos^4a+4cos^2a+1}+\sqrt{4sin^4a+4sin^2a+1}\)

\(=\sqrt{\left(2cos^2a+1\right)^2}+\sqrt{\left(2sin^2a+1\right)^2}\)

\(=2\left(sin^2a+cos^2a\right)+2=4\)

NV
8 tháng 2 2022

\(A=\dfrac{\dfrac{3sina}{sina}-\dfrac{cosa}{sina}}{\dfrac{2sina}{sina}+\dfrac{cosa}{sina}}=\dfrac{3-cota}{2+cota}=\dfrac{3-3}{2+3}=0\)

\(B=\dfrac{\dfrac{sin^2a}{sin^2a}-\dfrac{3sina.cosa}{sin^2a}+\dfrac{2}{sin^2a}}{\dfrac{2sin^2a}{sin^2a}+\dfrac{sina.cosa}{sin^2a}+\dfrac{cos^2a}{sin^2a}}=\dfrac{1-3cota+2\left(1+cot^2a\right)}{2+cota+cot^2a}=\dfrac{1-3.3+2\left(1+3^2\right)}{2+3+3^2}=...\)

8 tháng 2 2022

a. \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}=\dfrac{3\dfrac{sin\alpha}{cos\alpha}-1}{2\dfrac{sin\alpha}{cos\alpha}+1}=\dfrac{3.\dfrac{1}{3}-1}{2.\dfrac{1}{3}+1}=0\)

b.\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)\(=\dfrac{1-\dfrac{3cos\alpha}{sin\alpha}+\dfrac{2}{sin^2\alpha}}{2+\dfrac{cos\alpha}{sin\alpha}+\dfrac{cos^2\alpha}{sin^2\alpha}}=\dfrac{1-3.3+\dfrac{2}{sin^2\alpha}}{2+3+3^2}\)

Mà \(\dfrac{cos\alpha}{sin\alpha}=3,cos^2\alpha+sin^2\alpha=1\Rightarrow sin^2\alpha=\dfrac{1}{10}\)

\(B=\dfrac{1-3.3+\dfrac{2}{\dfrac{1}{10}}}{2+3+3^2}=\dfrac{6}{7}\)

4 tháng 8 2018

a) ta có : \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)

\(\Leftrightarrow A=sin^2\alpha+2sin\alpha.cos\alpha+cos^2\alpha+sin^2\alpha-2sin\alpha.cos\alpha+cos^2\alpha\)

\(\Leftrightarrow A=2\left(sin^2\alpha+cos^2\alpha\right)=2.1=2\) (không phụ thuộc vào \(\alpha\))

\(\Rightarrow\left(đpcm\right)\)

\(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)

\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha\left(sin^2\alpha+cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)

\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha\)

\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3=1^3=1\) (không phụ thuộc vào \(\alpha\) ) \(\Rightarrow\left(đpcm\right)\)

a/A = sin2 + 2. sin.cos + cos2 + sin2 -2cos.sin + cos2= 2

Tớ không biết ghi anpha nên .. bucminh