K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

?

AH
Akai Haruma
Giáo viên
19 tháng 10 2018

Lời giải:

\(A=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{2011}{1.2.3...2012}\)

\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{2012-1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...2011}-\frac{1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2...2012}< 1\)

Ta có đpcm.

5 tháng 5 2018

\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}\)

Có: \(\frac{1}{1.2.3.4}< \frac{1}{3.4}\)

\(\frac{1}{1.2.3.4.5}< \frac{1}{4.5}\)

..................................

\(\frac{1}{1.2.3.4.....1000}< \frac{1}{999.1000}\)

=>\(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{999.1000}\)

=> \(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{999}-\frac{1}{1000}\)

=> \(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3}-\frac{1}{1000}\)

=> \(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{2}+\frac{1}{1.2.3}+\frac{1}{3}-\frac{1}{1000}\)

=> \(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< \frac{999}{1000}< \frac{1000}{1000}\)

=>\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< 1\)

1 tháng 3 2018

\(S=\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+........+\dfrac{99}{1.2.......100}\)

\(=\dfrac{1}{2!}+\dfrac{2}{3!}+....+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+.......+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+....+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

\(\Leftrightarrow S< 1\left(đpcm\right)\)

8 tháng 6 2017

Đặt A = \(1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3....n}\)

Ta có: \(\frac{1}{1.2}=\frac{1}{1.2}\)

\(\frac{1}{1.2.3}=\frac{1}{2.3}\)

\(\frac{1}{1.2.3.4}< \frac{1}{3.4}\)

..............

\(\frac{1}{1.2.3....n}< \frac{1}{\left(n-1\right)n}\)

Cộng vế với vế ta được:

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1+1-\frac{1}{n}=2-\frac{1}{n}< 2\)(đpcm)