K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

?

AH
Akai Haruma
Giáo viên
19 tháng 10 2018

Lời giải:

\(A=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{2011}{1.2.3...2012}\)

\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{2012-1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...2011}-\frac{1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2...2012}< 1\)

Ta có đpcm.

25 tháng 10 2016
  • \(\sqrt{2012-2\sqrt{2011}}+1=\sqrt{\left(\sqrt{2011}-1\right)^2}+1=\sqrt{2011}\)
  •  

\(\frac{x^2+x+1}{x^2-x+1}=\frac{3\left(x^2+x+1\right)}{3\left(x^2-x+1\right)}=\frac{\left(x^2-x+1\right)+2\left(x^2+2x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{1}{3}\ge\frac{1}{3}\)(1)

\(\frac{x^2+x+1}{x^2-x+1}=\frac{3\left(x^2-x+1\right)-2\left(x^2-2x+1\right)}{x^2-x+1}=-\frac{2\left(x-1\right)^2}{x^2-x+1}+3\le3\)(2)

Từ (1) và (2) suy ra đpcm

25 tháng 10 2016

Mình cảm ơn

31 tháng 7 2016

\(\frac{k^2+k+1}{k\left(k+1\right)}=1+\frac{1}{k\left(k+1\right)}=1+\frac{1}{k}-\frac{1}{k+1}\) (\(k=1,....,n\)
Đặt A=\(\frac{3}{1.2}+\frac{7}{2.3}+...+\frac{n^2+n+1}{n\left(n+1\right)}=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{n}-\frac{1}{n+1}\)
\(\Rightarrow n+1>A=n-\frac{1}{n+1}>n\)

31 tháng 7 2016

Tổng quat rồi tìm quy luật đi bạn

17 tháng 9 2017

b) \(\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)+5=3x+2\left(\sqrt{2x^2+5x+3}-6\right)+12-16\)

\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=3\left(x-3\right)+2\left(\sqrt{2x^2+5x+3}-6\right)\)

\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}-3\left(x-3\right)-\frac{2\left(x-3\right)\left(2x+11\right)}{\sqrt{2x^2+5x+3}+6}=0\Leftrightarrow x-3=0\Leftrightarrow x=3.\)

16 tháng 9 2018

Ta có :\(\left(2011+1\right)^2=2011^2+1+2.2011\)

\(\Rightarrow2011^2+1=2012-2.2011\)

\(\Rightarrow N=\sqrt{2012^2-2.2011+\left(\dfrac{2011}{2012}\right)^2}+\dfrac{2011}{2012}\)

\(=\sqrt{\left(2012-\dfrac{2011}{2012}\right)^2}+\dfrac{2011}{2012}\)

\(=2012-\dfrac{2011}{2012}+\dfrac{2011}{2012}\)

\(=2019\)

Vậy N có giá trị là một số tự nhiên.