Cho a,b,c >0. CMR \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt BĐT cần c/m là A
Dự đoán đẳng thức xảy ra khi a = b = c
Áp dụng BĐT Cauchy cho 3 số không âm:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)
\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}.\frac{a+b}{8}.\frac{a+c}{8}}=\frac{3a}{4}\)
\(\frac{b^3}{\left(b+c\right)\left(b+a\right)}+\frac{b+c}{8}+\frac{b+a}{8}\)
\(\ge3\sqrt[3]{\frac{b^3}{\left(b+c\right)\left(b+a\right)}.\frac{b+c}{8}.\frac{b+a}{8}}=\frac{3b}{4}\)
\(\frac{c^3}{\left(c+a\right)\left(c+b\right)}+\frac{c+a}{8}+\frac{c+b}{8}\)
\(\ge3\sqrt[3]{\frac{c^3}{\left(c+a\right)\left(c+b\right)}.\frac{c+a}{8}.\frac{c+b}{8}}=\frac{3c}{4}\)
Cộng từng vế của các BĐT trên, ta được:
\(A+\frac{2\left(a+b+c\right)}{4}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow A\ge\frac{3}{4}\)
(Dấu "="\(\Leftrightarrow a=b=c\))
\(VT\ge\sum\left(\dfrac{a^3}{2a+b+c}\right)=\sum\left(\dfrac{a^3}{\sum a+a}\right)=\sum\dfrac{a^3}{3+a}\)
Ta có BĐT phụ :
\(\dfrac{a^3}{a+3}\ge\dfrac{11a-7}{16}\)(*)
\(\Leftrightarrow\left(16a+21\right)\left(a-1\right)^2\ge0\) (luôn đúng với mọi a>0)
Áp dụng BĐT (*) ta có :
\(\sum\dfrac{a^3}{3+a}\ge\dfrac{11\sum a-21}{16}=\dfrac{33-21}{16}=\dfrac{12}{16}=\dfrac{3}{4}\)
nhầm rồi , mình sorry , \(VT\ge\sum\left(\dfrac{2a^3}{2a+b+c}\right)=\sum\left(\dfrac{2a^3}{3+a}\right)\)
bạn chọn BĐT phụ là :
\(\dfrac{2a^3}{a+3}\ge\dfrac{11a-7}{8}\)
a ) CM : \(a^4+b^4\ge a^3b+b^3a\)
Giả sử điều cần c/m là đúng
\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)
\(\Rightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Rightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
Ta có : \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)
\(\Rightarrow a^4+b^4\ge a^3b+b^3a\)
\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+a^3b+b^4+b^3a\)
\(\Rightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\left(đpcm\right)\)
b ) \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(=a^4+a^3b+a^3c+b^3a+b^4+b^3c+c^3a+c^3b+c^4\)
\(=\left(a^4+b^4+c^4\right)+\left(a^3b+b^3a\right)+\left(b^3c+c^3b\right)+\left(a^3c+c^3a\right)\)
CMTT như a ) : \(\left\{{}\begin{matrix}a^4+b^4\ge a^3b+b^3a\\b^4+c^4\ge b^3c+c^3b\\a^4+c^4\ge a^3c+c^3a\end{matrix}\right.\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)\ge a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\left(đpcm\right)\)
Bạn xem lời giải ở đây nhé https://olm.vn/hoi-dap/question/960694.html
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)
\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)
\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)
Cộng theo vế và rút gọn:
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Theo bất đẳng thức AM - GM, ta có: \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1+b\right)\left(1+c\right)}.\frac{1+b}{8}.\frac{1+c}{8}}=\frac{3}{4}a\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{4}-\frac{b+c}{8}-\frac{1}{4}\)Tương tự, ta được: \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{3b}{4}-\frac{c+a}{8}-\frac{1}{4}\); \(\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3c}{4}-\frac{a+b}{8}-\frac{1}{4}\)
Cộng vế theo vế ba bất đẳng thức trên, ta được: \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{4}\)Đẳng thức xảy ra khi a = b = c = 1
\(\frac{a^3}{\left(a+b\right)^2}=\frac{a^3}{a^2+2ab+b^2}\ge\frac{a^3}{2\left(a^2+b^2\right)}\)
Xét: \(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)
Tương tự: \(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2};\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)
Cộng theo vế: \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{a+b+c}{2}\)
Nhân 1/2 vào 2 vế => đpcm. Dấu bằng xảy ra khi a=b=c
Áp dụng BĐT AM - GM ta có:
$ \frac{a^3}{(1 + b)(1 + c)} + \frac{1 + b}{8} + \frac{1 + c}{8} \geq \frac{3}{4}a$
$\frac{b^3}{(1 + c)(1 + a)} + \frac{1 + c}{8} + \frac{1 + a}{8} \geq \frac{3}{4}b$
$\frac{c^3}{(1 + a)(1 + b)} + \frac{1 + a}{8} + \frac{1 + b}{8} \geq \frac{3}{4}c $
Cộng vế theo vế ta được:
$ P + \frac{2(a + b + c) + 6}{8} \geq \frac{3}{4}(a + b + c) $
$<=> P \geq \frac{1}{2}(a + b + c) - \frac{3}{4}$
$=> P \geq \frac{3}{4} (dpcm)$
(a+b+c)(a3+b3+c3)
=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4
=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)
=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
P/s đến đây bạn áp đụng bđt thức bunhi a là ra
(a+b+c) (a3+b3+c3)
=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4
=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)
=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)