Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết theo BĐT Schur bậc 3 ta có:
\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)
\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)
Áp dụng (1):
\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Anh giúp em câu này ạ, câu này hơi khó anh ạ, làm chắc cũng lâu, có gì anh để mai cũng được ạ!
https://hoc24.vn/cau-hoi/cho-hinh-chop-sabcd-co-day-la-hinh-binh-hanh-m-va-p-la-hai-diem-lan-luot-di-dong-tren-ad-va-sc-sao-cho-mamd-pspc-x-x0-mat-phang-a-di-qua-m-va-song-song-voi-sab-cat-hinh-chop-sabcd-t.8753881358034
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)
Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)
\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)
Cộng vế:
\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)
\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{(b+2)(c+3)}+\frac{b+2}{36}+\frac{c+3}{48}\geq 3\sqrt[3]{\frac{a^3}{36.48}}=\frac{a}{4}\)
Tương tự:\(\frac{b^3}{(c+2)(a+3)}+\frac{c+2}{36}+\frac{a+3}{48}\geq \frac{b}{4}\)
\(\frac{c^3}{(a+2)(b+3)}+\frac{a+2}{36}+\frac{b+3}{48}\geq \frac{c}{4}\)
Cộng theo vế các BĐT trên và rút gọn ta có:
\(\frac{a^3}{(b+2)(c+3)}+\frac{b^3}{(c+2)(a+3)}+\frac{c^3}{(a+2)(b+3)}\geq \frac{29}{144}(a+b+c)-\frac{17}{48}\)
Mà cũng theo AM-GM:
\(a+b+c\geq 3\sqrt[3]{abc}=3\)
\(\Rightarrow \frac{a^3}{(b+2)(c+3)}+\frac{b^3}{(c+2)(a+3)}+\frac{c^3}{(a+2)(b+3)}\geq \frac{29}{144}(a+b+c)-\frac{17}{48}\geq \frac{29}{144}.3-\frac{17}{48}=\frac{1}{4}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
\(\frac{a^4}{\left(a^2-b^2+c^2\right)\left(a^2+b^2-c^2\right)}=\frac{a^4}{\left[\left(a-b\right)\left(a+b\right)+c^2\right]\left[\left(a-c\right)\left(a+c\right)+b^2\right]}\)
\(\frac{a^4}{\left[-c\left(a-b\right)+c^2\right]\left[-b\left(a-c\right)+b^2\right]}=\frac{a^4}{4bc\left(b+c\right)^2}=\frac{a^4}{4a^2bc}\)
Tương tự với 2 phân thức còn lại, ta cũng có : \(\frac{b^4}{b^4-\left(c^2-a^2\right)^2}=\frac{b^4}{4ab^2c};\frac{c^4}{c^4-\left(a^2-b^2\right)^2}=\frac{c^4}{4abc^2}\)
\(VT=\frac{a^4}{4a^2bc}+\frac{b^4}{4ab^2c}+\frac{c^4}{4abc^2}=\frac{a^4bc+ab^4c+abc^4}{4a^2b^2c^2}=\frac{abc\left(a^3+b^3+c^3\right)}{4a^2b^2c^2}\)
\(VT=\frac{a^3+b^3+c^3}{4abc}\)
Mà \(a+b+c=0\) nên \(a^3+b^3+c^3=3abc\) ( tự cm )
\(\Rightarrow\)\(VT=\frac{3abc}{4abc}=\frac{3}{4}\) ( đpcm )
Chúc bạn học tốt ~
\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\dfrac{9}{4}\)
\(\Rightarrow\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
Dấu "=" xảy ra khi \(a=b=c\)
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\Rightarrow xyz=1\)
\(P=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
Đặt :
\(A=\)\(\dfrac{a^4}{a^4-\left(b^2-c^2\right)^2}+\dfrac{b^4}{b^4-\left(c^2-a^2\right)^2}+\dfrac{c^4}{c^4-\left(a^2-b^2\right)}\)
\(=\dfrac{a^4}{\left(a^2-b^2+c^2\right)\left(a^2+b^2-c^2\right)}+\dfrac{b^4}{\left(b^2-c^2+a^2\right)\left(b^2+c^2-a^2\right)}+\dfrac{c^4}{\left(c^2-a^2+b^2\right)\left(c^2+a^2-b^2\right)}\)
Ta có : \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2=c^2\)
\(\Leftrightarrow a^2+b^2-c^2=-2ab\)
Tương tự :
+) \(a^2-b^2+c^2=-2ac\)
+) \(b^2+c^2-a^2=-2bc\)
\(\Leftrightarrow A=\dfrac{a^4}{\left(-2ac\right)\left(-2ab\right)}+\dfrac{b^4}{\left(-2ab\right)\left(-2bc\right)}+\dfrac{c^4}{\left(-2bc\right)\left(-2ac\right)}\)
\(=\dfrac{a^4}{4a^2bc}+\dfrac{b^4}{4ab^2c}+\dfrac{c^4}{4abc^2}\)
\(=\dfrac{a^4bc+ab^4c+abc^4}{4a^2b^2c^2}\)
\(=\dfrac{abc\left(a^3+b^3+c^3\right)}{4a^2b^2c^2}\) (cậu tự chứng minh \(a^3+b^3+c^3=3abc\) nhé)
\(=\dfrac{3a^2b^2c^2}{4a^2b^2c^2}\)
\(=\dfrac{3}{4}\)
Vậy..
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)
\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)
\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)
Cộng theo vế và rút gọn:
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
AM-GM là gì z bn