cho tổng S=1+2+2 mũ 2+2 mũ 3 +......+2 mũ 98+2 mũ 99
chứng tỏ rằng S chia hết cho15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi tổng đó là A \(A = 1/1.2 + 1/2.3 +......+ 1/99.100 \)
A = 1/1.2 + 1/2.3 +......+ 1/99.100
A = 1 - 1/2 + 1/2 - 1/3 +.......+1/99 - 1/100
A = 1 - 1/100
A = 99/100 < 1
=> A < 1 (đpcm)
Gọi tổng trên là B
B = 1/22 + 1/32 +.......+ 1/1002
B = 1/2.2 + 1/3.3 + .......+ 1/100.100
B < 1/1.2 + 1/2.3 +......+ 1/99.100 B < 1 - 1/2 + 1/2 - 1/3 +.......+ 1/99 - 1/100 B < 1 - 1/100
B < 99/100 < 1
=> B < 1 (đpcm)
b) \(69^2-69.5\)
= 69 . 69 -69 . 5
= 69 . (69 - 5)
=69 . 64
Vì 64 \(⋮\)32 nên 69 . 64 hay \(69^2\)- 69.5 \(⋮\)32
Có \(A=2+2^2+2^3+...+2^{60}\)
\(\Rightarrow A=2\left(1+2+...+2^{59}\right)⋮2\)(1)
Lại có : \(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{59}\right)⋮3\)(2)
Lại có :\(A=2+2^2+2^3+...+2^{60}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(A=7\left(2+...+2^{58}\right)⋮7\)(3)
Từ (1) và (3) \(\Rightarrow A⋮\left(2.7\right)=14\)(4)
Từ(1);(2);(3);(4) \(\Rightarrow A⋮2;3;7;14\)
\(S=1+2+2^2+2^3+...+2^{99}\)
\(=\left(1+2+2^2+2^3\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}\right)\)
\(=\left(1+2+4+8\right)+...+2^{96}.\left(1+2+2^2+2^3\right)\)
\(=15+...+2^{96}.15\)
\(=15.\left(1+...+2^{96}\right)⋮15\)
\(\Rightarrow\) \(S⋮15\)