phân tích đa thức thành nhân tử
\(x^2-8x +15\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x2 + 8x + 7 ) ( x2 + 8x + 15 ) + 15
Đặt x2 + 8x + 7 = y ta có:
y ( y + 8 ) + 15
= y2 + 8y + 15
= ( y + 3 ) ( y + 5 )
= ( x2 + 8x + 10 ) ( x2 + 8x + 12 )
= ( x2 + 8x + 10 ) ( x + 2 ) ( x + 6 )
Đặt x2 + 8x + 7 = y ta có:
y ( y + 8 ) + 15
= y2 + 8y + 15
= ( y + 3 ) ( y + 5 )
= ( x2 + 8x + 10 ) ( x2 + 8x + 12 )
= ( x2 + 8x + 10 ) ( x + 2 ) ( x + 6 )
=(x^2+8x)^2+23(x^2+8x)+135
Cái này ko phân tích được nha bạn
\(=\left(x+4\right)^2-1=\left(x+4-1\right)\left(x+4+1\right)=\left(x+3\right)\left(x+5\right)\)
\(x^2+8x+15=x\left(x+3\right)+5\left(x+3\right)=\left(x+3\right)\left(x+5\right)\)
\(x^2-8x+12=\left(x^2-6x\right)-\left(2x-12\right)=x\left(x-6\right)-2\left(x-6\right)=\left(x-2\right)\left(x-6\right)\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
\(8x\left(x^2-9\right)=0\Rightarrow8x\left(x-3\right)\left(x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x-3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)
\(=x^2\left(x-1\right)-4\left(x-1\right)^2=\left(x-1\right)\left[x^2-4\left(x-1\right)\right]\\ =\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
x4 - 4x3 - 8x2 + 8x
= x(x3 - 4x2 - 8x + 8)
= x[x3 + 8 - 4x(x + 2)]
= x[(x + 2)(x2 - 2x + 4) - 4x(x + 2)]
= x(x + 2)(x2 - 6x + 4)
= x(x + 2)(x2 - 6x + 9 - 5)
= \(x\left(x+2\right)\left[\left(x-3\right)^2-5\right]=x\left(x+2\right)\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)\)
\(x^4-4x^3-8x^2+8x\)
\(=x\left(x^3-4x^2-8x+8\right)\)
\(=x\left(x^3-6x^2+2x^2+4x-12x+8\right)\)
\(=x\left[\left(x^3-6x^2+4x\right)+\left(2x^2-12x+8\right)\right]\)
\(=x\left[x\left(x^2-6x+4\right)+2\left(x^2-6x+4\right)\right]\)
\(=x\left(x^2-6x+4\right)\left(x+2\right)\)
\(=x\left[\left(x-3\right)^2-\left(\sqrt{5}\right)^2\right]\left(x+2\right)\)
\(=x\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\left(x+2\right)\)
\(x^2-8x+15\)
\(=x^2-3x-5x+15\)
\(=x\left(x-3\right)-5 \left(x-3\right)\)
\(=\left(x-5\right)\left(x-3\right)\)
\(x^2-8x+15\)
\(=\left(x^2-3x\right)-\left(5x-15\right)\)
\(=x\left(x-3\right)-5\left(x-3\right)\)
\(=\left(x-3\right)\left(x-5\right)\)
Tham khảo nhé~