bài 1. cho hình thang ABCD (AB//CD) có số đo góc A =110 độ , góc C = 55 độ . tính số đo góc B và góc D
bài 2. cho tam giác ABC ,đường trung tuyến AD ,gọi M là 1 điểm trên cạnh AC sao cho AM=1/2 MC . gọi O là giao điểm của BM với AD . chứng minh rằng:
a, O là trung điểm AD
b, OM=1/4 BM
nhờ mọi người giúp mk vs , mk đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
Đây là hình vẽ , lưu ý ở bên dưới ví dụ như ABC là góc ABC
Vì điểm D thuộc AC nên điểm D nằm giữa 2 điểm A và C
=> AD + CD = AC
Thay số: 4 + 3 = AC
=> 7 = AC
=> AC = 7(cm)
Vậy AC = 7 cm
b) Trên cùng một nửa mặt phẳng bờ chứa tia BA có ABD = 30o, ABC = 55o
=> ABD < ABC
=> ABD + DBC = ABC
Thay số: 30o + DBC = 55o
=> DBC = 55o - 30o
=> DBC = 25o
Vậy DBC = 25o
c) TH1: Tia Bx và BD nằm trên cùng một nửa mặt phẳng bờ chứa tia BA
=> Tia BD nằm giữa hai tia BA và Bx
=> ABD + DBx = ABx
Thay số: 30o + 90o = ABx
=> 120 o = Abx
=> ABx = 120o
TH2: Tia Bx và tia BD nằm trên hai nửa mặt phẳng đối nhau bờ chứa tia BA
=> Tia BA nằm giữa hai tia BD và Bx
=> DBA + ABx = DBx
Thay số: 30o + ABx = 90o
=> ABx = 90o - 30o
=> ABx = 60o
Vậy TH1: ABx = 120o
TH2 : ABx = 60o
Chúc bạn học tốt nha!
bạn ơi đề thiếu phần d
d)trên ab lấy e.cmr 2 đoạn và ce cắt nhau
Bài 1:
Do AB song song với CD (giả thiết)
⇒ Góc BAD + góc ADC = 180 độ
⇒ 110 độ + góc ADC = 180 độ ⇒ Góc ADC = 180 độ - 110 độ = 70 độ
Làm tương tự với góc ABC và góc BCD thì ta sẽ tính được góc ABC = 130 độ
Bài 2:
Bạn tự vẽ hình nha.
a) Gọi I là trung điểm của MC ; Nối D với I ⇒ MI = MC hay MI = \(\dfrac{1}{2}\) MC
Mà AM = \(\dfrac{1}{2}\) MC ⇒ AM = MI
Xét tam giác MBC có: I là trung điểm của MC; D là trung điểm của BC
⇒ ID là đường trung bình của tam giác MBC
⇒ ID song song với MB ⇒ ID song song với OM
Xét tam giác ADI có: AM = MI; OM song song với DI( chứng minh trên) ⇒ O là trung điểm của AD
b) Xét tam giác ADI có: AM = MI; OA = OD
⇒ OM là đường trung bình của tam giác ADI
⇒ OM = \(\dfrac{1}{2}\) DI ⇒ 2OM = DI
Xét tam giác MBC có: DI là đường trung bình của tam giác MBC
⇒ DI = \(\dfrac{1}{2}\) MB ⇒ 2DI = MB
⇒ 2.2OM = MB ⇒ 4OM = MB ⇒ OM = \(\dfrac{1}{4}\) MB