a) cho tam giác ABC có \(\widehat{B}=40^0,\widehat{C}=30^0\). dựng điểm D khác phía với B sao cho \(\widehat{DAC}=\widehat{DCA}=50^0\)
Chứng minh rằng tam giác ABC cân.
b) chứng minh rằng chu vi một tam giác có các góc nhọn hơn 4 lần bán kính đường tròn ngoại tiếp tam giác.
câu a) mình nghĩ chứng minh ABD cân chứ ạ, sao lại ABC
Gọi H là trung điểm của AC. \(\Delta\)DAC cân tại D.
Do đó DH\(\perp\)AC và AH = \(\frac{1}{2}\)AC (1)
Vẽ AK \(\perp\)BC. Vì \(\Delta\)AKC vuông tại K và ^BCA = 300
nên AK = \(\frac{1}{2}\)AC (2)
Từ (1) và (2) suy ra AK = AH
Xét \(\Delta\)AKB và \(\Delta\)AHD có:
^AKB = ^AHD (=900)
AK = AH(gt)
^BAK = ^DAH (=500)
Do đó \(\Delta\)AKB = \(\Delta\)AHD (g.c.g)
=> AB = AD
Vậy \(\Delta\)ABD cân tại A(đpcm)