Cho x,y,z la cac so duong thoa man dieu kien x+y+z > hoac = 12
GTNN: P =\(\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{z}}+\dfrac{z}{\sqrt{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q=\(\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\)
\(Q=\left(\dfrac{x+a}{x}\right)\left(\dfrac{y+a}{y}\right)\left(\dfrac{z+a}{z}\right)\)\
=\(\left(\dfrac{2x+y+z}{x}\right)\left(\dfrac{2y+x+z}{y}\right)\left(\dfrac{2z+x+y}{z}\right)\)
=\(\dfrac{\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)}{xyz}\)
ÁP dụng BĐT cô si
\(2x+y+z=x+x+y+z\ge4\sqrt[4]{x^2yz}\)
\(2y+x+z=y+y+x+z\ge4\sqrt[4]{y^2xy}\)
\(2z+y+x=z+z+x+y\ge4\sqrt[4]{z^2xy}\)
=> Q\(\ge\dfrac{64.\sqrt[4]{x^4y^4z^4}}{xyz}=64\)
=> MinQ=64 khi x=y=z=a/3
theo bđt cauchy schwars dạng engel ta có
\(T=\dfrac{x^2}{y+x}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\)
Dấu '=' xảy ra khi x=y=z
pt \(\Leftrightarrow\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015\)
\(\Leftrightarrow3\sqrt{2}x=2015\)
\(\Leftrightarrow x=\dfrac{2015}{3\sqrt{2}}\)
vậy \(T_{min}=\dfrac{2015}{\sqrt{2}}\) khi \(x=y=z=\dfrac{2015}{3\sqrt{2}}\)
ko chắc đúng nha bạn :))
Ta có \(ax^3=by^3=cz^3\Leftrightarrow\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=ax^2+by^2+cz^2\Leftrightarrow\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}=\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}+\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}+\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)Vậy \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{y+z-4}=a>0\\\sqrt{z+x-4}=b>0\\\sqrt{x+y-4}=c>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{b^2+c^2-a^2+4}{2}\\y=\dfrac{c^2+a^2-b^2+4}{2}\\z=\dfrac{a^2+b^2-c^2+4}{2}\end{matrix}\right.\).
\(2P=\dfrac{b^2+c^2-a^2+4}{a}+\dfrac{c^2+a^2-b^2+4}{b}+\dfrac{a^2+b^2-c^2+4}{c}=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}-a-b-c\).
Áp dụng bất đẳng thức AM - GM:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\left(\dfrac{a^2}{b}+b\right)+\left(\dfrac{b^2}{c}+c\right)+\left(\dfrac{c^2}{a}+a\right)-\left(a+b+c\right)\ge2a+2b+2c-a-b-c=a+b+c\).
Tương tự, \(\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}\ge a+b+c\).
Do đó \(2P\ge a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}=\left(a+\dfrac{4}{a}\right)+\left(b+\dfrac{4}{b}\right)+\left(c+\dfrac{4}{c}\right)\ge4+4+4=12\Rightarrow P\ge6\).
Đẳng thức xảy ra khi a = b = c = 2 hay x = y = z = 4.
Vậy Min P = 6 khi x = y = z = 4.
\(P=\dfrac{4x}{2.2.\sqrt{y+z-4}}+\dfrac{4y}{2.2.\sqrt{x+z-4}}+\dfrac{4z}{2.2.\sqrt{x+y-4}}\)
\(P\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\ge4.\dfrac{3}{2}=6\)
Dấu "=" xảy ra khi \(x=y=z=4\)
\(P^2=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}+\dfrac{2xy}{\sqrt{yz}}+\dfrac{2yz}{\sqrt{zx}}+\dfrac{2zx}{\sqrt{xy}}\)
\(P^2=\left(\dfrac{x^2}{y}+\dfrac{xy}{\sqrt{yz}}+\dfrac{xy}{\sqrt{yz}}+z\right)+\left(\dfrac{y^2}{z}+\dfrac{yz}{\sqrt{zx}}+\dfrac{yz}{\sqrt{zx}}+x\right)+\left(\dfrac{z^2}{x}+\dfrac{zx}{\sqrt{xy}}+\dfrac{zx}{\sqrt{xy}}+y\right)-\left(x+y+z\right)\)
\(P^2\ge4\sqrt[4]{\dfrac{x^4y^2z}{y^2z}}+4\sqrt[4]{\dfrac{y^4z^2x}{z^2x}}+4\sqrt[4]{\dfrac{z^4x^2y}{x^2y}}-\left(x+y+z\right)=3\left(x+y+z\right)\ge36\)
\(\Rightarrow P\ge6\)
\(P_{min}=6\) khi \(x=y=z=4\)
Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:
\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)
\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)
Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)
Cộng vế:
\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)
\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)