Chứng minh rằng 20n + 9 và 30n+13 ( n khác 0) là số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ậyGọi ƯCLN của 20n + 9 ; 30n + 13 là d (d \(\in\) N*).
20n + 9 \(⋮\) d \(\Rightarrow\)3(20n + 9) = 60n + 27 \(⋮\)d (1)
30n + 13 \(⋮\)d \(\Rightarrow\)2(30n + 13) = 60n + 26 \(⋮\)d (2)
Từ (1), (2) ta có: (60n + 27) - (60n + 26) = 1 \(⋮\)d \(\Leftrightarrow\)d = 1.
Vậy 20n + 9 ; 30n + 13 nguyên tố cùng nhau.
Gọi d là ƯCLN ( 20n + 9 , 30n + 13 )
Ta có : 20n + 9 chia hết cho d
30n + 13 chia hết cho d
\(\Rightarrow\)( 20n + 9 ) - ( 30n + 13 ) chia hết cho d
\(\Rightarrow\)3 ( 20n + 9 ) - 2 ( 30n + 13 ) chia hết cho d
\(\Rightarrow\)( 60n + 27 ) - ( 60n + 26 ) chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow\)d = 1
\(\Rightarrow\)ƯCLN ( 20n + 9 , 30n + 13 ) = 1
Vậy hai số này là hai Số nguyên tố cùng nhau
Gọi d là ƯCLN của tử và mẫu .
=>12n +1 chia hết cho d 60n+5 chia hết cho d
=>
30n +2chia hết cho d 60n +4 chia hết cho d
=> (60n+5) -(60n+4) chia hết cho d
=>1 chia hết cho d
=> d=1 => điều phải chứng minh (đpcm)
mik chi la dc cau 2 thui
goi d la uoc chung cua (20n+9;30n+13)
(20n+9)chia het cho d (30n+13)chiahet cho d
(GIANG BAI:sau khi tinh ngoai nhap: UCLN cua (20n+9;30n+13) la 60)
luu y:ban ko ghi phan giang bai vao tap
3(20n+9) - 2(30n+13)
(60n+27) - (60n+26)
con 1 chia het d
suy ra:d thuoc U(1)={1}
suy ra:UCLN(20n+9 va 30n+13)=1
vay:20n+9 va 30n+13 la2 so nguyen cung nhau
chu thich:ban vui long thay chu suy ra bang dau suy ra trong toan hoc va thay chua chia het bang dau chia het trong toan hoc
câu 1:
Ta có :2n-1=2(n-3)+5
Để 2(n-3)+5 chia hết cho 2n-3 thì n-3 thuộc Ư(5) *vì 2(n-3) chia hết cho n-3*
Mà Ư(5)={1;-1;5;-5}
Ta có bảng sau:
n-3 -5 -1 1 5
n -2 2 4 8
Vậy n thuộc {-2;2;4;8}
Gọi d là ƯC( 20n + 9; 30n + 13 )
Ta có : 20n + 9 chia hết cho d
30n + 13 chia hết cho d
=> 20n + 9 - 30n + 13 chia hết cho d
=> 3 . ( 20n + 9 ) - 2 . ( 30n + 13 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN( 20n + 9 ; 30n + 13 ) = 1
=> 20n + 9 và 30n + 13 là hai số nguyên tố cùng nhau
goi UCLN(20n+9,30,+13)=d
=>20n+9 chia hết cho d
30+13 chia hết cho d
=>60+27 chia hết cho d
60+26 chia hết cho d
=>(60+27)-(60+26) chia hết cho d
=>1 chia hết cho d
mà 1 chia hết cho 1
=>d=1
=>UCLN(20n+9,30n+13)=1
=>20n+9 và 30n+13 là 2 số nguyên tố cùng nhau
vậy .......... (dccm)
Gọi \(UCLN\left(20n+9;30n+13\right)=d\left(d\in N^{\cdot}\right)\)
\(\Rightarrow\)\(20n+9⋮d\)
\(30n+13⋮d\)
\(\Rightarrow\)\(3\left(20n+9\right)⋮d\)
\(2\left(30n+13\right)⋮d\)
\(\Rightarrow\)\(60n+27⋮d\)
\(60n+26⋮d\)
\(\Rightarrow\)\(\left(60n+27\right)-\left(60n+26\right)⋮d\)
\(\Rightarrow60n+27-60n-26⋮d\)
\(\Rightarrow1⋮d\)\(\Rightarrow d\in UCLN\left(1\right)\Rightarrow UCLN\left(20n+9;30n+13\right)=1\)
\(\Rightarrow\)20n+9 và 30n+13 là 2 snt cùng nhau
Vậy 20n+9 và 30n+13 là 2 snt cùng nhau (đpcm)
Gọi \(d=ƯCLN\left(20n+3;30n+4\right)\)
Ta có: \(20n+3\) chia hết cho \(d\) nên \(3\left(20n+3\right)\) chia hết cho \(d\)
và \(30n+4\)chia hết cho \(d\) nên \(2\left(30n+4\right)\) chia hết cho \(d\)
Do đó: \(\left[3\left(20n+3\right)-2\left(30n+4\right)\right]\) chia hết cho \(d\)
\(\Leftrightarrow\left(60n+9-60n-8\right)\) chia hết cho \(d\)
\(\Leftrightarrow1\) chia hết cho \(d\) \(\Rightarrow d=1\)
Vậy, \(20n+3\) và \(30n+4\) nguyên tố cùng nhau với \(n\in N\)