K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

Vì AD là phân giác BAC => DAC = DAB = BAC : 2 hay 2DAC = 2DAB = BAC

Vì CE là phân giác BCA => BCE = ECA = BCA : 2 hay 2BCE = 2ECA = BCA

Xét △ABC vuông tại B có: BAC + BCA = 90o (2 góc nhọn trong △ vuông)

=> 2DAC + 2ECA = 90o  => DAC + ECA = 45o

Xét △ICA có: ICA + IAC + CIA = 180o (tổng 3 góc trong tam giác)

=> 45o + CIA = 180o  => CIA = 135o

b, Xét △ABC có BCx là góc ngoài của △ tại đỉnh C, ta có: BCx = CBA + BAC => BCx = 90o + BAC

Vì CK là phân giác BCx \(\Rightarrow\frac{\widehat{BCx}}{2}=\frac{90^o+\widehat{BAC}}{2}\)\(\Rightarrow\widehat{BCK}=45^o+\widehat{DAC}\)

Xét △KCA có: CKA + KCA + CAK = 180o (tổng 3 góc trong △)

=> CKA + KCD + DCI + ICA + CAK = 180o

=> CKA + 45o + DAC + DCI + ICA + CAK = 180o

=> CKA + (DAC + ICA) + (DCI + CAK) = 135o

=> CKA + 45o + 45o = 135o

=> CKA = 45o

21 tháng 10 2023

a: ΔBAC vuông tại B

=>\(\widehat{BAC}+\widehat{BCA}=90^0\)

=>\(2\left(\widehat{IAC}+\widehat{ICA}\right)=90^0\)

=>\(\widehat{IAC}+\widehat{ICA}=45^0\)

Xét ΔIAC có \(\widehat{IAC}+\widehat{ICA}+\widehat{CIA}=180^0\)

=>\(\widehat{CIA}=180^0-45^0=135^0\)

b: CI và CK là hai tia phân giác của hai góc kề bù

=>\(\widehat{ICK}=90^0\)

\(\widehat{CIK}+\widehat{CIA}=180^0\)

=>\(\widehat{CIK}=45^0\)

Xét ΔCKI vuông tại C có \(\widehat{CIK}=45^0\)

nên ΔCKI vuông cân tại C

=>\(\widehat{CKI}=\widehat{CKA}=45^0\)

17 tháng 9 2020

1) Góc \(\widehat{BCx}\) kề bù \(\widehat{BCA}\)  => \(\widehat{BCx}+\widehat{BCA}=180\Rightarrow\widehat{BCx}=180-40=140\)

Vì Cy là phân giác \(\widehat{BCx}\)nên \(\widehat{BCy}=\frac{1}{2}\widehat{BCx}=70\Rightarrow\widehat{BCy}=\widehat{ABC}\)ở vị trí so le trong => Cy // AB

2) Xét tam giác ABC: \(\widehat{BCA}+\widehat{ABC}+\widehat{BAC}=180\Rightarrow\widehat{BAC}=180-70-40=70\)

3) Có \(CH\perp AB\)mà \(AB//Cy\)nên \(CH\perp Cy\)

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)