Cho hình bình hành ABCD (AB>AD) có O là trung điểm BD, AH vuông góc BD tại H, AH vuông góc với BD tại K
a)Chứng minh ADCB là hình bình hành
b) Chứng minh A,C,O thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
\(\widehat{ADH}=\widehat{CBK}\)
Do đó: ΔAHD=ΔCKB
Suy ra: AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
b: Ta có: AHCK là hình bình hành
nên Hai đường chéo AC và HK cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của HK
nên O là trung điểm của AC
hay A,O,C thẳng hàng
a) Vì \(AH\), \(CK\) vuông góc với \(BD\) (gt)
Suy ra \(AH\) // \(CK\)
Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(AD = BC\); \(AD\) // \(BC\)
Xét \(\Delta ADH\) và \(\Delta CBK\) ta có:
\(\widehat {{\rm{AHD}}} = \widehat {{\rm{CKB}}} = 90^\circ \) (gt)
\(AD = BC\) (cmt)
\(\widehat {{\rm{ADH}}} = \widehat {{\rm{CBK}}}\) (do \(AD\) // \(BC\))
Suy ra \(\Delta ADH = \Delta CBK\) (ch-gn)
Suy ra \(AH = CK\) (hai cạnh tương ứng)
Mà \(AH\) // \(CK\) (cmt)
Suy ra \(AHCK\) là hình bình hành
b) Vì \(AHCK\) là hình bình hành nên hai đường chéo \(HK\) và \(AC\) cắt nhau tại trung điểm.
Mà \(I\) là trung điểm của \(HK\).
Suy ra \(I\) là trung điểm của \(AC\).
Ta lại có \(ABCD\) là hình bình hành nên hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm.
Suy ra \(I\) là trung điểm của \(BD\) hay \( IB = ID\)
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
=>ΔAHD=ΔCKB
=>AH=CK
mà AH//CK
nên AHCK là hình bình hành
b: AHCK là hbh
=>AC cắt HK tại trung điểm của mỗi đường
=>A,O,C thẳng hàng
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
=>ΔAHD=ΔCKB
=>AH=CK
mà AH//CK
nên AHCK là hình bình hành
b: AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường
=>I là trung điểm của AC
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>I là trung điểm của BD
=>IB=ID
a: Xét tứ giác AHCK có
AH//CK
AK//CH
=>AHCK là hình bình hành
b: ABCD là hình bình hành
=>O là trung điểm chung của AC và BD
AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường
=>O là trung điểm của HK
a: Xét tứ giác ABCD có
O là trung điểm chung của AC và BD
=>ABCD là hình bình hành
b: Xét ΔOHA vuông tại H và ΔOKC vuông tại K có
OA=OC
\(\widehat{AOH}=\widehat{COK}\)
Do đó: ΔOHA=ΔOKC
=>OH=OK
=>O là trung điểm của HK
a: Xét ΔADH vuông tại H và ΔCBK vuông tại K có
AD=CB
\(\widehat{ADH}=\widehat{CBK}\)
Do đó: ΔADH=ΔCBK
Suy ra: AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
a: \(AK=KB=\dfrac{AB}{2}\)
\(DE=EC=\dfrac{DC}{2}\)
mà AB=DC
nên AK=KB=DE=EC
Xét tứ giác AKCE có
AK//CE
AK=CE
Do đó: AKCE là hình bình hành
b: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
AKCE là hình bình hành
=>AC cắt KE tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của KE
=>K,O,E thẳng hàng