K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

DƯƠNG PHAN KHÁNH DƯƠNG :

16 tháng 5 2015

Tự vẽ hình nha

a) xét tam giác HAB và tam giác ABC

góc AHB = góc ABC

góc CAB : chung

Suy ra : tam giác AHB ~ tam giác ABC ( g-g )

b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :

AC2 + AB2 = BC2

162 + 122 = BC2

400          = BC2

=> BC = \(\sqrt{400}\)= 20 ( cm )

ta có tam giác HAB ~ tam giác ABC ( câu a )

=> \(\frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}\)

=> AH = \(\frac{12.16}{20}=9,6\)( cm )

Độ dài cạnh BH là 

Áp dụng định lí py - ta - go vào tam giác HBA ta được : 

AH+ BH2 = AB2

BH2          = AB2 - AH2

BH2             = 122 - 9,62

BH2              = 51,84 

=> BH       = \(\sqrt{51,84}\) = 7,2 ( cm )

c) Vì AD là đường phân giác của tam giác ABC nên :

\(\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}\)

                    <=>   \(\frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}\)

                    <=>   AB.CD               =   AC(BC - CD)

                    hay   12CD                 =   16.20 - 16CD

                     <=>  12CD+ 16CD      =   320

                     <=>             28CD      =   320

                     <=>                 CD     =    \(\frac{320}{28}\approx11.43\left(cm\right)\)

Độ dài cạnh BD là :

BD = BC - CD

BD = 20 - \(\frac{320}{28}\)\(\approx\) 8,57 ( cm )

16 tháng 5 2015

Cho hỏi đồng dạng là sao bạn???Tớ mới học lớp 7 thôi,nên chưa biết ^^

a: BC=5cm
AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC>DE

a:

Xét ΔABC có AB<AC

mà \(\widehat{C};\widehat{B}\) lần lượt là góc đối diện của các cạnh AB,AC

nên \(\widehat{ACB}< \widehat{ABC}\)

Ta có: AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}\)

Xét ΔADB có \(\widehat{ADC}\) là góc ngoài tại đỉnh D

nên \(\widehat{ADC}=\widehat{DAB}+\widehat{ABD}=\widehat{DAB}+\widehat{ABC}\)

Xét ΔADC có \(\widehat{ADB}\) là góc ngoài tại đỉnh D

nên \(\widehat{ADB}=\widehat{DAC}+\widehat{ACB}\)

Ta có: \(\widehat{ADC}=\widehat{BAD}+\widehat{ABC}\)

\(\widehat{ADB}=\widehat{DAC}+\widehat{ACB}\)

mà \(\widehat{BAD}=\widehat{DAC};\widehat{ABC}>\widehat{ACB}\)

nên \(\widehat{ADC}>\widehat{ADB}\)

b: Xét ΔABE có

AD là đường cao

AD là đường phân giác

Do đó: ΔABE cân tại A

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

mà AB<AC

nên DB<DC