cho a, b, c > 0. chứng minh rằng:\(a^2\text{(}b+c-a\text{)}+b^2\text{(}a+c-b\text{)}+c^2\text{(}b+a-c\text{)}\le3abc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)
\(\Leftrightarrow a^4+b^4+c^4=2\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(ab+bc+ac\right)\right]\)\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\)
a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
\(\Rightarrow2ab\text{=}2bc+2ca\)
\(\Rightarrow2ab-2bc-2ca\text{=}0\)
Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)
\(\text{=}a^2+b^2+c^2\)
Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)
\(\Rightarrow A\text{=}a+b-c\)
Vì a;b;c là các số hữu tỉ suy ra : đpcm
b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)
Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
Từ đây ta thấy giống phần a nên :
\(B\text{=}a+b-c\)
\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)
Suy ra : đpcm.
Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(a+b+c=\sqrt{2019}\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=2019\)
\(\Rightarrow a^2+b^2+c^2=2019\) ( vì \(ab+bc+ca=0\))
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\\ A=a^2+b^2+c^2\\ \Leftrightarrow A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\\ \Leftrightarrow A=\left(\sqrt{2019}\right)^2-2\cdot0=2019\)
Ta có: \(VT-VP\ge\frac{\left(a+b+c\right)^2}{3}-\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(\frac{a+b+c-3}{3}\right)\ge0\) (áp dụng bđt cô si cho 3 số dương)
P/s: Is it true? Trong sách nâng cao và pt toán 8 của tác giả vũ hữu bình em nhớ nó phức tạp lắm mà sao em làm lai đơn giản nhỉ?
\(B=\Sigma\frac{ab}{a^2+b^2-c^2}\)
\(B=\frac{ab}{a^2+\left(b-c\right)\left(b+c\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}+\frac{ac}{c^2+\left(a-b\right)\left(a+b\right)}\)
\(B=\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ac}{c^2-c\left(a-b\right)}\)
\(B=\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ac}{c\left(c-a+b\right)}\)
\(B=\frac{b}{a+b+c-2b}+\frac{c}{a+b+c-2c}+\frac{a}{a+b+c-2a}\)
\(B=\frac{-b}{2b}+\frac{-c}{2c}+\frac{-a}{2a}\)
\(B=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}\)
\(B=\frac{-3}{2}\)