Rút gọn
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}......\frac{899}{30^2}\)
Hộ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{\left(1.2.3....29\right)\left(3.4.5....31\right)}{\left(2.3.4....30\right)\left(2.3.4....30\right)}=\frac{31}{30.2}=\frac{31}{60}\)
\(A=\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{899}{30^2}\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{899}{900}\)
\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot...\cdot\frac{29\cdot31}{30\cdot30}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot29}{2\cdot3\cdot4\cdot...\cdot30}\cdot\frac{3\cdot4\cdot5\cdot...\cdot31}{2\cdot3\cdot4\cdot...\cdot30}=\frac{1}{30}\cdot\frac{31}{2}=\frac{31}{60}\)
A\(=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}=\frac{3.8.15...899}{2^2.3^2.4^2...30^2}=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)
\(=\)\(\frac{\left(1.2.3...29\right).\left(3.4.5...31\right)}{\left(2.3.4...30\right).\left(2.3.4...30\right)}=\frac{1.2.3...29}{2.3.4...30}.\frac{3.4.5...31}{2.3.4...30}=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
=> A= \(\frac{31}{60}\)
đúng cái nhé
<img class="rg_ic rg_i" id="-5MOOXUlT93OUM:" jsaction="load:str.tbn" alt="Kết quả hình ảnh cho son tung mtp" onload="typeof google==='object'&&google.aft&&google.aft(this)" src="" style="width: 187px; height: 187px; margin-left: -8px; margin-right: -6px; margin-top: 0px;">
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.........\frac{899}{30^2}\)
A= \(\frac{1.3.2.4.3.5...29.31}{2.2.3.3...30.30}\)
A=\(\frac{\left(2.3...29.30\right)\left(3.4.5...29.31\right)}{\left(2.3.4...30\right)\left(2.3.4...30\right)}\)
A=\(\frac{31}{2.30}\)
A=\(\frac{31}{60}\)
Đặt \(A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}\)
\(\Rightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}\)
\(\Rightarrow A=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)
\(\Rightarrow A=\frac{\left(1.2.3...29\right).\left(3.4.5...31\right)}{\left(2.3.4...30\right).\left(2.3.4...30\right)}\)
\(\Rightarrow A=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
Vậy \(A=\frac{31}{60}\)