Cho hình chữ nhật ABCD. Gọi H là đường chiếu của D trên AC, M là trung điểm HC. Đường thẳng vuông góc với DM tại M cắt AB ở I. Chứng minh : AI = BI
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
19 tháng 2 2021
a) Ta có: HM⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: HM//AB(Định lí 1 từ vuông góc tới song song)
Xét ΔCAB có M là trung điểm của BC(gt)
MH//AB(cmt)
Do đó: H là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Gọi K là trung điểm của DH.
MK là đường trung bình của \(\Delta HDC\Rightarrow\hept{\begin{cases}KM//DC\\KM=\frac{1}{2}DC\end{cases}\Rightarrow\hept{\begin{cases}KM//AI\left(1\right)\\KM=\frac{1}{2}AB\end{cases}}}\) (do DC//AI và CD = AB)
Ta có: KM // DC (cmt) và \(DC\perp AD\left(gt\right)\Rightarrow KM\perp AD\)
C/m được K là trực tâm của \(\Delta ADM\Rightarrow AK\perp DM\)
\(\Rightarrow AK//IM\) (vì IM vuông góc với DM) (2)
Từ (1) và (2), ta được AKMI là hình bình hành.
\(\Rightarrow AI=KM=\frac{1}{2}AB\)
\(AI+IB=AB\Rightarrow\frac{1}{2}AB+IB=AB\Rightarrow IB=\frac{1}{2}AB\)
Vậy AI = BI.