Tìm số tự nhiên A có 4 chữ số. Chữ số hàng đơn vị gấp 3 lần chữ số hàng trăm. Chữ số hàng chục gấp 8 lần chữ số hàng nghìn. Biết số đó chia hết cho 9
( LỜI GIẢI ĐÚNG, ĐẦY ĐỦ MÌNH MỚI LIKE )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi số cần tìm là abcd ta có:
d=3b ; c=8a và a+b+c+d chia hết cho 9.
Vì a khác 0 và c<10 nên a chỉ có thể bằng 1 và c bằng 8.
a+b+c+d = b+d+9 chia hết cho 9
=> b+d chia hết cho 9.
+ Nếu b+d = 0 thì thõa mãn, ta lập được số 1080.
+ Nếu b+d = 9 thì b+3b=9=> 4b=9 => Không tìm được b,d
+ Nếu b+d = 18 thì 4b=18 => Không tìm được b,d
Bài 2: Số đó chia hết cho 4 và 5 nên y=0
Vậy 6+x+1+4+y = 11+x chia hết cho 3
=> x=1, 4; 7
Vậy ta tìm được 3 số: 61140 ; 64140; 67140
Vì chữ số hàng đơn vị gấp ba lần chữ số hàng chục nên chữ số hàng chục là: 9 : 3 = 3
Vì chữ số hàng trăm hơn chữ số hàng chục 4 đơn vị nên chữ số hàng trăm là: 3 + 4 = 7
Vì chữ số hàng nghìn kém chữ số hàng trăm hai đơn vị nên chữ số hàng nghìn là: 7 – 2 = 5
Vì chữ số hàng nghìn hơn chữ số hàng chục nghìn 1 đơn vị nên chữ số hàng chục nghìn là 5 – 1 = 4
Vì chữ số hàng chục nghìn gấp đôi chữ số hàng trăm nghìn nên chữ số hàng trăm nghìn là 4 : 2 = 2
Vậy số có 6 chữ số cần tìm là 245 739
Hàng chục gấp 3 hàng đơn vị. Hàng trăm gấp 2 hàng chục. Vậy hàng trăm gấp 2x3=6 lần hàng đơn vị. Vì vậy hàng đơn vị chỉ có thể là 1. Số đó là 4631
Hàng chục gấp 3 hàng đơn vị.
Hàng trăm gấp 2 hàng chục.
Vậy hàng trăm gấp 2x3=6 lần hàng đơn vị.
Vì vậy hàng đơn vị chỉ có thể là 1.
Số đó là 4631.
Gọi số cần tìm là abcd ta có:
d=3b ; c=8a và a+b+c+d chia hết cho 9.
Vì a khác 0 và c<10 nên a chỉ có thể bằng 1 và c bằng 8.
a+b+c+d = b+d+9 chia hết cho 9
=> b+d chia hết cho 9.
+ Nếu b+d = 0 thì thõa mãn, ta lập được số 1080.
+ Nếu b+d = 9 thì b+3b=9=> 4b=9 => Không tìm được b,d
+ Nếu b+d = 18 thì 4b=18 => Không tìm được b,d\
HT