Chứng minh rằng:
n.(2n-3)-2n.(n+1) chia hết cho 5 với mọi n thuộc Z
làm nhanh giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = n.(n+1).(2n+1).(3n+1).(4n+1)
+, Nếu n chia 5 dư 1 => 4n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia 5 dư 2 => 3n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia 5 dư 3 => 2n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia 5 dư 4 => n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia hết cho 5 => A chia hết cho 5
Vậy A luôn chia hết cho 5
Tk mk nha
-Xét n có dạng 5k thì tích có n chia hết cho 5 nên chia hết cho 5
-Xét n có dạng 5k+1 thì 4n +1=4x(5k+1)+1=20k+4+1=20k+5 chia hết cho 5.Vậy tích cũng chia hết cho 5
-Xét n có dạng 5k+2 thì 2n+1=2x(5k+2)+1=10k +4+1=10k+5 chia hết cho 5.Vậy tích chia hết cho 5
-Xét n có dạng 5k+3 thì 3n+1=3x(5k+3)+1=15k+9+1=15k+10 chia hết cho 5.Vậy tích chia hết cho 5
-Xét n có dạng 5k+4 thì n+1=5k+4+1=5k+5 chia hết cho 5.Vậy tích chia hết cho 5
Từ các trường hợp trên,suy ra tích nx(n+1)x(2n+1)x(3n+1)x(4n+1)chia hết cho 5 với mọi số tự nhiên n
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Ta có : \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n là số nguyên , n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 => n(n+1)(n+2) chia hêt cho 2x3 = 6
Hay \(n^2\left(n+1\right)+2n\left(n+1\right)\)luôn chia hết cho 6 với mọi số nguyên n.
Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6
Ta có \(n^4+2n^3-n^2-2n=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n^2+2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4
Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6
Vậy biểu thức chia hết cho 24
Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6
Ta có
�
4
+
2
�
3
−
�
2
−
2
�
=
�
2
(
�
2
−
1
)
+
2
�
(
�
2
−
1
)
n
4
+2n
3
−n
2
−2n=n
2
(n
2
−1)+2n(n
2
−1)
=
(
�
2
−
1
)
(
�
2
+
2
)
=
(
�
−
1
)
�
(
�
+
1
)
(
�
+
2
)
=(n
2
−1)(n
2
+2)=(n−1)n(n+1)(n+2)
Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4
Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6
Vậy biểu thức chia hết cho 24
Đúng ko nek
a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6
b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1
= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1
= 6n - 6n^2 chia hết 6
c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18
= - 19
Bài 1:
\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n\left(n^2+n-n^2-n+3\right)\)
\(=6n\)\(⋮\)\(6\)
Bài 2:
\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)
\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)
\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)
Bài 3:
\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
\(\Rightarrow\)đpcm
ta có
\(\left(2n-1\right)^3-2n-1\)
\(=2n.\left(2n-2\right).\left(2n-2\right)\)
\(=8n.\left(n-1\right)^2⋮8\)
\(\left(2n+1\right)^3-(2n+1)\)
\(=\left(2n-2\right)\left(2n-2\right)2n\)
\(=8n\left(n-1\right)^2⋮8\)
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
=-5n
-5n chia hết cho 5 vs mọi số nguyên n vì -5 chia hết cho 5
vậy n(2n-3)-2n(n+1) chia hết cho 5
k mk nhak
Thanks <3