Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Vì n là số tự nhiên nên n = 5k hoặc n = 5k + 1 hoặc n = 5k + 2 hoặc n = 5k + 3 hoặc n = 5k + 4 .( k thuộc N )
+) Với n = 5k thì n chia hết cho 5.
=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.
+) Với n = 5k + 1 thì 4n + 1 = 4 x ( 5k + 1 ) + 1 = 20k + 4 + 1 = 20k + 5 chia hết cho 5.
=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.
+) Với n = 5k + 2 thì 2n + 1 = 2 x ( 5k + 2 ) + 1 = 10k + 4 + 1 = 10k + 5 chia hết cho 5.
=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.
+) Với n = 5k + 3 thì 3n + 1 = 3 x ( 5k + 3 ) + 1 = 15k + 9 + 1 = 15k + 10 chia hết cho 5.
=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.
+) Với n = 5k + 4 thì n + 1 = 5k + 4 + 1 = 5k + 5 chia hết cho 5.
=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.
Vậy với mọi số tự nhiên n thì n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.
Với mọi số tự nhiên n ta có các trường hợp sau: TH1: n chia hết cho 5 thì tích chia hết cho 5. TH 2: n chia cho 5 dư 1 thì n = 5k +1 Þ 4n +1= 20k + 5 chia hết cho 5 Þ tích chia hết cho 5. TH3: n chia cho 5 dư 2 thì n = 5k +2 Þ 2n +1= 10k + 5 chia hết cho 5 Þ tích chia hết cho 5. TH4: n chia cho 5 dư 3 thì n = 5k +3 Þ 3n +1= 15k + 10 chia hết cho 5 Þ tích chia hết cho 5. TH 5: n chia cho 5 dư 4 thì n = 5k +4 Þ n +1= 5k + 5 chia hết cho 5 Þ tích chia hết cho 5. Vậy : n( n +1)( 2n +1)( 3n + 1)( 4n +1) chia hết cho 5 với mọi số tự nhiên n.
Đặt A = n.(n+1).(2n+1).(3n+1).(4n+1)
+, Nếu n chia 5 dư 1 => 4n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia 5 dư 2 => 3n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia 5 dư 3 => 2n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia 5 dư 4 => n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia hết cho 5 => A chia hết cho 5
Vậy A luôn chia hết cho 5
Ta có : \(n= [5k + 1;5k+2;5k+3;5k+4;5k]\) n có thể là các giá trị trên \((K \in N)\)
(+) Nếu n = 5k => biểu thức trên chia hết cho 5
(+) Nếu n = 5k + 1 thì 4n+1 chia hết cho 5. Vì: 4n+1 = 4.(5k + 1) + 1 = 20k + 4 + 1 = 20k + 5
=> Mà 20k + 5 chia hết cho 5 => Biểu thức trên chia hết cho 5
(+) Nếu n= 5k + 2 thì 2n+1 chia hết cho 5. Vì 2n + 1 = 2.(5k + 2) + 1 = 10k + 4 + 1
=> Mà 10k + 5 chia hết cho 5 => Biểu thức trên chia hết cho 5
(+) Nếu n = 5k + 3 thì 3n+1 chia hết cho 5. Vì 3n + 1 = 3(5k + 3) + 1 = 15k + 9 + 1
=> Mà 15k + 10 chia hết cho 5 => Biểu thức trên chia hết cho 5
(+) Nếu n = 5k+4 thì n+1 chia hết cho 5. Vì n+1 = 5k + 4 + 1
=> Mà 5k + 5 chia hết cho 5 => Biểu thức trên chia hết cho 5
Từ các giả thiết trên
=> n(n+1)(2n+1)(3n+1)(4n+1) chia hết cho 5 với mọi n
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
Vì
Mà 4n - 1 chia 4 dư 3; do
Đặt A = n.(n+1).(2n+1).(3n+1).(4n+1)
+, Nếu n chia 5 dư 1 => 4n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia 5 dư 2 => 3n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia 5 dư 3 => 2n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia 5 dư 4 => n+1 chia hết cho 5 => A chia hết cho 5
+, Nếu n chia hết cho 5 => A chia hết cho 5
Vậy A luôn chia hết cho 5
Tk mk nha
-Xét n có dạng 5k thì tích có n chia hết cho 5 nên chia hết cho 5
-Xét n có dạng 5k+1 thì 4n +1=4x(5k+1)+1=20k+4+1=20k+5 chia hết cho 5.Vậy tích cũng chia hết cho 5
-Xét n có dạng 5k+2 thì 2n+1=2x(5k+2)+1=10k +4+1=10k+5 chia hết cho 5.Vậy tích chia hết cho 5
-Xét n có dạng 5k+3 thì 3n+1=3x(5k+3)+1=15k+9+1=15k+10 chia hết cho 5.Vậy tích chia hết cho 5
-Xét n có dạng 5k+4 thì n+1=5k+4+1=5k+5 chia hết cho 5.Vậy tích chia hết cho 5
Từ các trường hợp trên,suy ra tích nx(n+1)x(2n+1)x(3n+1)x(4n+1)chia hết cho 5 với mọi số tự nhiên n