Bài 1:
A=lxl +3
B=l5x-1l-3
So sánh:
2^34 và 3^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x| + |x + 1| = 1
Nếu x \(\le\) - 1
=> |x| = -x
=> |x + 1| = -(x + 1) = -x - 1
Khi đó |x| + |x + 1| = 1 (1)
<=> -x - x - 1 = 1
=> -2x = 2
=> x = -1(tm)
Nếu -1 < x < 0
=> |x| = -x
=> |x + 1| = x + 1
Khi đó (1) <=> -x + x + 1 = 1
=> 0x = 0
=> \(x\in\varnothing\)
Nếu x \(\ge\) 0
=> |x| = x
=> |x + 1| = x + 1
Khi đó (1) <=> x + x + 1 = 1
=> 2x = 0
=> x = 0 (tm)
Vậy \(x\in\left\{-1;0\right\}\)
b) |x| + |x + 1| = 2020
Nếu x \(\le\) - 1
=> |x| = -x
=> |x + 1| = -(x + 1) = -x - 1
Khi đó |x| + |x + 1| = 1 (1)
<=> -x - x - 1 = 2020
=> -2x = 2021
=> x = -1010,5(tm)
Nếu -1 < x < 0
=> |x| = -x
=> |x + 1| = x + 1
Khi đó (1) <=> -x + x + 1 = 2020
=> 0x = 2019
=> \(x\in\varnothing\)
Nếu x \(\ge\) 0
=> |x| = x
=> |x + 1| = x + 1
Khi đó (1) <=> x + x + 1 = 2020
=> 2x = 2019
=> x = 1009,5 (tm)
Vậy \(x\in\left\{-1010,5;1009,5\right\}\)
c)\(\frac{x+1}{18}+\frac{x+2}{17}=\frac{x+3}{16}+\frac{x+4}{15}\)
=> \(\left(\frac{x+1}{18}+1\right)+\left(\frac{x+2}{17}+1\right)=\left(\frac{x+3}{16}+1\right)+\left(\frac{x+4}{15}+1\right)\)
=> \(\frac{x+19}{18}+\frac{x+19}{17}=\frac{x+19}{16}+\frac{x+19}{15}\)
=> \(\frac{x+19}{18}+\frac{x+19}{17}-\frac{x+19}{16}-\frac{x+19}{15}=0\)
=> \(\left(x+19\right)\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
=> x + 19 = 0 (Vì \(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\ne0\)
=> x = -19
Vậy x =-19
a) | x | + | x + 1 | = 1 (*)
+) Với x < -1
(*) <=> -x - ( x + 1 ) = 1
<=> -x - x - 1 = 1
<=> -2x - 1 = 1
<=> -2x = 2
<=> x = -1 ( không thỏa mãn )
+) Với -1 ≤ x < 0
(*) <=> -x + ( x + 1 ) = 1
<=> -x + x + 1 = 1
<=> 0 + 1 = 1 ( luôn đúng với mọi x ) (1)
+) Với ≥ 0
(*) <=> x + ( x + 1 ) = 1
<=> x + x + 1 = 1
<=> 2x + 1 = 1
<=> 2x = 0
<=> x = 0 ( thỏa mãn ) (2)
Từ (1) và (2) => Với -1 ≤ x ≤ 0 thì thỏa mãn đề bài
b) | x | + | x + 1 | = 2020 (*)
+) Với x < -1
(*) <=> - x - ( x + 1 ) = 2020
<=> -x - x - 1 = 2020
<=> -2x - 1 = 2020
<=> -2x = 2021
<=> x = -2021/2 ( thỏa mãn )
+) Với -1 ≤ x < 0
(*) <=> -x + ( x + 1 ) = 2020
<=> -x + x + 1 = 2020
<=> 0 + 1 = 2020 ( vô lí )
+) Với x ≥ 0
(*) M <=> x + ( x + 1 ) = 2020
<=> x + x + 1 = 2020
<=> 2x + 1 = 2020
<=> 2x = 2019
<=> x = 2019/2 ( thỏa mãn )
Vậy x = -2021/2 hoặc x = 2019/2
c) \(\frac{x+1}{18}+\frac{x+2}{17}=\frac{x+3}{16}+\frac{x+4}{15}\)
\(\Leftrightarrow\left(\frac{x+1}{18}+1\right)+\left(\frac{x+2}{17}+1\right)=\left(\frac{x+3}{16}+1\right)+\left(\frac{x+4}{15}+1\right)\)
\(\Leftrightarrow\frac{x+1+18}{18}+\frac{x+2+17}{17}=\frac{x+3+16}{16}+\frac{x+4+15}{15}\)
\(\Leftrightarrow\frac{x+19}{18}+\frac{x+19}{17}=\frac{x+19}{16}+\frac{x+19}{15}\)
\(\Leftrightarrow\frac{x+19}{18}+\frac{x+19}{17}-\frac{x+19}{16}-\frac{x+19}{15}=0\)
\(\Leftrightarrow\left(x+19\right)\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
Vì \(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\ne0\)
\(\Rightarrow x+19=0\)
\(\Rightarrow x=-19\)
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
Trường hợp 1 : \(x< 0\) , ta có :
\(-x=2x-1\)
\(\Rightarrow2x-\left(-x\right)=1\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\frac{1}{3}\) ( không thõa mãn )
Trương hợp 2 : \(x\ge0\) , ta có :
\(x=2x-1\)
\(\Rightarrow x-2x=-1\)
\(\Rightarrow x=1\) ( thõa mãn )
Vậy \(x=1\)
\(3^{21}=3^{20}.3=9^{10}.3\)
\(2^{31}=2^{30}.2=8^{10}.2\)
\(9^{10}>8^{10}\); \(3>2\) \(\Rightarrow3^{21}>2^{31}\)
Vậy ..................
Lời giải:
a. $|2x+1|=|x-1|$
$\Leftrightarrow 2x+1=x-1$ hoặc $2x+1=1-x$
$\Leftrightarrow x=-2$ hoặc $x=0$
b.
$|2x+1|=|5x-2|$
$\Leftrightarrow 2x+1=5x-2$ hoặc $2x+1=2-5x$
$\Leftrightarrow x=1$ hoặc $x=\frac{1}{7}$
Thay vào đẳng thức xem $|2x+1|=3$ không thì ta thấy $x=1$ thỏa mãn.
Bài 1 đề là jz
Bài 2:
ta có: 234 > 230 = (23)10 = 810 > 310
=> 234 > 310
Bài 1 đề là jz???
Bài 2:
ta có: 234 > 230 = (23)10 = 810 > 310
=> 234 > 310