https://www.youtube.com/watch?v=IW73TFYWQDE
Làm cx đc ko lm cx đc: \(CMR:\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uh.cậu là fan của bts hả.mình cũng thế,nhưng mình thích red velvet hơn
Biến đổi VT ta có :
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=VP\)
\(\Rightarrowđpcm\)
1.ta có :
\(\left(10^3+10^2+10+1\right)^2\)
=\(\left(1111\right)^2\)
=1234321
hc tốt
\(bn\)\(xem\)\(lai\)\(giup\)\(mk\)\(cho\)\(\frac{x+522}{7}\)\(neu\)\(thay\)\(bang\)\(\frac{x+552}{7}\)\(thi\)\(dug\)\(hon\)
thế thì bạn giải thử xem cô t ra đề thế mà ừ thì cứ cho là x + 552 cx đc
1/1+2 + 1/+1+2+3 + ... + 1/1+2+3+...+2014
= 1/(1+2).2:2 + 1/(1+3).3:2 + ... + 1/(1 + 2014).2014:2
= 2/2.3 + 2/3.4 + ... + 2/2014.2015
= 2.(1/2.3 + 1/3.4 + ... + 1/2014.2015)
= 2.(1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2014 - 1/2015)
= 2.(1/2 - 1/2015)
= 2.1/2 - 2.1/2015
= 1 - 2/2015
= 2013/2015
1/1+2 + 1/+1+2+3 + ... + 1/1+2+3+...+2014
= 1/(1+2).2:2 + 1/(1+3).3:2 + ... + 1/(1 + 2014).2014:2
= 2/2.3 + 2/3.4 + ... + 2/2014.2015
= 2.(1/2.3 + 1/3.4 + ... + 1/2014.2015)
= 2.(1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2014 - 1/2015)
= 2.(1/2 - 1/2015)
= 2.1/2 - 2.1/2015
= 1 - 2/2015
= 2013/2015
Đặt \(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow S< 1-\frac{1}{100}< 1\Rightarrow S< 1\)
Làm vui đó chủ yếu là nghe link gửi
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}< 1\)
\(A< 1\left(đpcm\right)\)