K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

Đặt \(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow S< 1-\frac{1}{100}< 1\Rightarrow S< 1\)

Làm vui đó chủ yếu là nghe link gửi

23 tháng 9 2018

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}< 1\)

\(A< 1\left(đpcm\right)\)

22 tháng 9 2018

uh.cậu là fan của bts hả.mình cũng thế,nhưng mình thích red velvet hơn

22 tháng 9 2018

Biến đổi VT ta có :

 \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=VP\)

\(\Rightarrowđpcm\)

                  

17 tháng 9 2016

A= (1x2x3x...x10)/(1x2x3x...x10)x(1x2x3x...x10)/(2x3x4x...x11)

A=1x 1/11=1/11

bạn nhớ nha

25 tháng 6 2019

1.ta có :

\(\left(10^3+10^2+10+1\right)^2\) 

=\(\left(1111\right)^2\) 

=1234321

hc tốt

26 tháng 2 2022

54/31 : 12/64 - 8 = 40/31

k nhé:))

26 tháng 2 2022

\(=\frac{40}{31}\)

27 tháng 12 2017

\(bn\)\(xem\)\(lai\)\(giup\)\(mk\)\(cho\)\(\frac{x+522}{7}\)\(neu\)\(thay\)\(bang\)\(\frac{x+552}{7}\)\(thi\)\(dug\)\(hon\)

27 tháng 12 2017

thế thì bạn giải thử xem cô t ra đề thế mà ừ thì cứ cho là x + 552 cx đc

25 tháng 7 2016

1/1+2  +  1/+1+2+3  +  ...  + 1/1+2+3+...+2014

= 1/(1+2).2:2  +  1/(1+3).3:2  +   ...  + 1/(1 + 2014).2014:2

= 2/2.3  +  2/3.4  +  ...  + 2/2014.2015

= 2.(1/2.3  +  1/3.4  +  ...  + 1/2014.2015)

= 2.(1/2  -  1/3  +  1/3  -  1/4  +  ... + 1/2014  -  1/2015)

= 2.(1/2 - 1/2015)

= 2.1/2 - 2.1/2015

= 1 - 2/2015

= 2013/2015

26 tháng 7 2016

1/1+2  +  1/+1+2+3  +  ...  + 1/1+2+3+...+2014

= 1/(1+2).2:2  +  1/(1+3).3:2  +   ...  + 1/(1 + 2014).2014:2

= 2/2.3  +  2/3.4  +  ...  + 2/2014.2015

= 2.(1/2.3  +  1/3.4  +  ...  + 1/2014.2015)

= 2.(1/2  -  1/3  +  1/3  -  1/4  +  ... + 1/2014  -  1/2015)

= 2.(1/2 - 1/2015)

= 2.1/2 - 2.1/2015

= 1 - 2/2015

= 2013/2015