chứng tỏ 50<A<100
A=1+1/2+1/3+1/4+..+1/2^100-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\dfrac{50}{111}+\dfrac{50}{112}+\dfrac{50}{113}+\dfrac{50}{114}\)
Ta thấy :
\(\dfrac{50}{111}>\dfrac{50}{200}\)
\(\dfrac{50}{112}>\dfrac{50}{200}\)
\(\dfrac{50}{113}>\dfrac{50}{200}\)
\(\dfrac{50}{114}>\dfrac{50}{200}\)
\(\Rightarrow A>\dfrac{50}{200}+\dfrac{50}{200}+\dfrac{50}{200}+\dfrac{50}{200}\)
\(\Rightarrow A>\dfrac{50}{200}.4=1\) \(\left(1\right)\)
Mặt khác :
\(\dfrac{50}{111}< \dfrac{50}{100}\)
\(\dfrac{50}{112}< \dfrac{50}{100}\)
\(\dfrac{50}{113}< \dfrac{50}{100}\)
\(\dfrac{50}{114}< \dfrac{50}{100}\)
\(\Rightarrow A< \dfrac{50}{100}+\dfrac{50}{100}+\dfrac{50}{100}+\dfrac{50}{100}\)
\(\Rightarrow A< \dfrac{50}{100}.4=2\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow1< A< 2\rightarrowđpcm\)
Chứng tỏ (x-2)+(x-4)+(x-6)+...+(x-100) chia hết 25
Chứng tỏ ( x-1)+(x-3)+(x-5)+...+(x-99) chia hết 50
Để chứng tỏ một số được đưa ra là hợp chất, ta cần kiểm tra xem nó có phải là một hợp chất hữu cơ hay không, và nếu có thì kiểm tra khả năng tác dụng với các chất hóa học khác để xác định thành phần hoặc cấu trúc của nó. Trong trường hợp này, số 7 mũ 50 + 9 mũ 43 không phải là một hợp chất hữu cơ, mà là kết quả của phép tính số học. Không có khả năng tác dụng với các chất để xác định thành phần hoặc cấu trúc của nó. Do đó, không có cách nào để chứng tỏ rằng nó là một hợp chất.
NHÓA1/26+1/27+1/28+...+1/49+1/50=1-1/2+1/3-1...
<=>2/26+2/28+2/30+...+2/50=1-1/2+1/3-1...
<=>1/13+1/14+1/15+...+1/25=1-1/2+1/3-1...
<=>2/14+2/16+2/18+...2/24=1-1/2+1/3-1/...
<=>1/7+1/8+1/9+...+1/12=1-1/2+1/3-1/4+...
<=>2/8+2/10+2/12=1-1/2+1/3-1/4+1/5-1/6
<=>1/4+1/5+1/6=1-1/2+1/3-1/4+1/5-1/6
<=>2/4+2/6=1-1/2+1/3
<=>1/2+1/3=1-1/2+1/3
<=>2/2=1
Ta có:
751 + 750 = 749.72 + 749.7 = 749(72 + 7) = 749.56
Vì 56 chia hết cho 56 nên 749.56 chia hết cho 56 hay 751 + 750 chia hết cho 56.
Tick cho mình nha