Tìm các số a,b,c,d biết a.abc.bcd = abcd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta gọi số cần tìm có dạng abcd và tổng các chữ số là (a+b+c+d). ĐK: a,b,c,d thuộc (0;10)
vì 0<(a+b+c+d)<40
<=> 2359 - 0 < 2359 - (a+b+c+d) < 2359 - 4
mặt khác, vì abcd + (a+b+c+d) = 2359 => abcd = 2359 - (a+b+c+d)
thay vào, ta có:
2359 > abcd > 2319
số abcd nằm trong khoảng (2319->2359) => số đó phải có dạng 23xy => a=2,b=3, cd thuộc khoảng (19->59)
mà ta có abcd + (a+b+c+d) = 2359
<=> 2300 + cd + (2+3+c+d) = 2359
<=> 11c + 2d = 54
<=> d = (54-11c)/2
để d là số tự nhiên => (54-11c) phải là số chẵn => c phải chẵn
c= 0 => d=54/2 = 27 (>9) => loại
c= 2 => d= 32/2 = 16 (>9) => loại
c= 4 => d= 10/2 = 5
=> số cần tìm abcd chính là 2345
theo mk nghĩ thì k có số abcd
abcd chia hết cho 2 và 5 nên tận cùng phải là 0 vậy d = 0
chia hết cho 3 và 9 , số chia hết cho 9 cũng chia hết cho 3
vậy tổng abcd = 22 nên k chia hết cho 9 nên k có số abcd
Từ abcd+abc+ab+a = 4321 (1) ta có:
1111a+11b+11c+d = 4321 (2)
- Từ (2) ta thấy a phải nhỏ hơn 4 vì nếu a=4 thì số hạng 1111a=4444 lớn hơn tổng của cả 4 số hạng nên không thể, nếu a=2 thì từ (1) ta thấy b+a \geq20 mà không có 2 số tự nhiên có 1 chữ số nào có tổng \geq20 nên cũng không thể, vậỵ a=3;
- Do a=3 nên ta có: 1111.3+111b+11c+d = 4321 hay 111b+11c+d = 4321-3333 = 988 (3)
Từ (3) ta thấy b phải nhỏ hơn 9 vì nếu b=9 thì số hạng 111b=999 lớn hơn tổng của cả 3 số hạng nên không thể; nếu a=7 thì từ (3) ta có 777+11c+d = 988 hay 11c+d = 211 (4), không thể tồn tại số tự nhiên c và d để thỏa mãn (4) nên b = 8;
- Do b=8 nên từ (3) có: 111.8+11c+d = 988 hay 11c+d = 100 (5)
Từ (5) ta thấy c không thể bằng 8 vì không tồn tại 88+d = 100 với d là số tự nhiên có 1 chữ số, do vậy c = 9;
- Do c = 9 nên từ (5) ta có d = 1.
Số các số cần tìm là: a = 3, b = 8, c = 9 và d = 1.
a, 1ab+36 = ab1
=> 100 + 10a + b+36 = 100a+10b+1
<=> 100a - 10a + 10b -b = 100 + 36 - 1
<=> 90a+9b= 135
<=> 9(10a+b)= 135
<=>10a+b=135:9=15
Vì a,b khác 0 => a=1 và b=5 là thoả mãn
Vậy:a=1 và b=5
Abcd+bcd+cd+d=8098( a,b,c khác 0 và a,b,c,d khác nhau)
Vì d x 4=….8 => d= 2 hoặc 7
Nếu d = 2 thì c x 3 = ….9 =>c=3
=> b x 2 = …0=> b= 5
Nếu b=5 => a + 1( nhớ ) = 8 => a=7
Vậy ta có số: 7532
Nếu d= 7 thì c x 3 + 2 (nhớ) = ….9 => c x 3 =…7 => c=9
b x 2 + 2 (nhớ)= …0 => b=4
a + 1(nhớ)= 8 =>a=7(loại vì a khác d)
Vậy tất cả các số thoả mãn đề bài là: 7532
Theo bài ra ta có:
a.bcd.abc=abcadc
a.bcd=abcadc:abc=1001
Như vậy 1001 là tích một số cá một chữ số và một số có 3 chữ số
Ước có một chữ số duy nhất của 1001 là 7 =>a=7 =>bcd=143
Vậy a=7:b=1:c=4:d=3
------------------------học tốt ko ần đúng đâu---------------------------
thanks. bạn