Cho a,b,c>0,tim GTNN:\(\frac{\sqrt{a^3c}}{\sqrt{b^3a}+bc}+\frac{\sqrt{b^3a}}{\sqrt{c^3b}+ac}+\frac{\sqrt{c^3b}}{\sqrt{a^3c}+ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc là a;b;c dương
Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\) và vế trái là P
\(P=\frac{x}{\sqrt{z\left(3x+y\right)}}+\frac{y}{\sqrt{x\left(3y+z\right)}}+\frac{z}{\sqrt{y\left(3z+x\right)}}=\frac{x^2}{x\sqrt{3xz+yz}}+\frac{y^2}{y\sqrt{3xy+xz}}+\frac{z^2}{z\sqrt{3yz+xy}}\)
\(P\ge\frac{\left(x+y+z\right)^2}{x\sqrt{3xz+yz}+y\sqrt{3xy+xz}+z\sqrt{3yz+xy}}=\frac{\left(x+y+z\right)^2}{Q}\)
\(Q=\sqrt{x\left(3x^2z+xyz\right)}+\sqrt{y\left(3xy^2+xyz\right)}+\sqrt{z\left(3yz^2+xyz\right)}\)
\(\Rightarrow Q^2\le3\left(x+y+z\right)\left(xy^2+yz^2+zx^2+xyz\right)\)
Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\Rightarrow x^2+yz\le xy+xz\)
\(\Rightarrow zx^2+yz^2\le xyz+xz^2\Rightarrow xy^2+yz^2+zx^2+xyz\le xy^2+2xyz+xz^2\)
\(\Rightarrow xy^2+yz^2+zx^2+xyz\le x\left(y+z\right)^2=\frac{1}{2}.2x\left(y+z\right)\left(y+z\right)\le\frac{4}{27}\left(x+y+z\right)^3\)
\(\Rightarrow Q^2\le3\left(x+y+z\right).\frac{4}{27}\left(x+y+z\right)^3=\frac{4}{9}\left(x+y+z\right)^4\)
\(\Rightarrow Q\le\frac{2}{3}\left(x+y+z\right)^2\)
\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{\frac{2}{3}\left(x+y+z\right)^2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt[3]{a+3b}=\sqrt[3]{1.1.(a+3b)}\leq \frac{1+1+a+3b}{3}\)
\(\Rightarrow \frac{1}{\sqrt[3]{a+3b}}\geq \frac{3}{a+3b+2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
$\Rightarrow P\geq 3\left(\frac{1}{a+3b+2}+\frac{1}{b+3c+2}+\frac{1}{c+3a+2}\right)$
Áp dụng BĐT Cauchy- Schwarz:
\(\frac{1}{a+3b+2}+\frac{1}{b+3c+2}+\frac{1}{c+3a+2}\geq \frac{9}{4(a+b+c)+6}=\frac{9}{4.\frac{3}{4}+6}=1\)
Do đó: $P\geq 3.1=3$
Vậy $P_{\min}=3$ khi $a=b=c=\frac{1}{4}$
GTNN là tắt của giá trị nhỏ nhất,
Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\) (số a là số biết trước)
VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\) hay \(minP=\dfrac{1}{3}\)
Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,
VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra
<=> x = b (x là ẩn và b là biết trước)
Ở một số bài có thể cho điều kiện của ẩn.