Tìm x, y biết:
a) (x-12)2014 + |y.15| = 0
b) (x-3)2 + (y-5)2 < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
Lời giải:
a. Ta thấy:
$(x-12)^{2014}\geq 0; \forall x$
$|y.15|\geq 0$ với mọi $y$
Do đó để tổng của chúng bằng $0$ thì:
$(x-12)^{2014}=|y.15|=0$
$\Leftrightarrow x=12; y=0$
b. Ta thấy:
$(x-3)^2\geq 0; (y-5)^2\geq 0$ với mọi $x,y$
$\Rightarrow (x-3)^2+(y-5)^2\geq 0$ với mọi $x,y$
$\Rightarrow$ không tồn tại $x,y$ thỏa mãn $(x-3)^2+(y-5)^2<0$