K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

Một số hệ thức về cạnh và đường cao trong tam giác vuông

24 tháng 9 2018

thank

10 tháng 10 2016

\(A=s\left(x\right)cs\left(x\right)+\frac{\left(s^3\left(x\right)+cs^3\left(x\right)\right)}{cs\left(x\right)\left(1+t\left(x\right)\right)}=s\left(x\right)cs\left(x\right)+\left(\frac{\left(s\left(x\right)+cs\left(x\right)\right)\left(1-s\left(x\right)cs\left(x\right)\right)}{\left(s\left(x\right)+cs\left(x\right)\right)}\right)\)

\(=1\) vì \(s\left(x\right)+cs\left(x\right)\ne0,\forall0< =x< =\frac{\pi}{2}\)

5 tháng 7 2021

1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)

\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)

Vậy...

2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)

\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)

\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)

\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)

Vậy...

3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)

\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)

\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)

Vậy...

4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)

\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)

\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)

Vậy...

5, Xem lại đề

6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)

\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)

Vậy...

AH
Akai Haruma
Giáo viên
28 tháng 11 2019

\(A=2(\sin ^6x+\cos ^6x)-3(\sin ^4x+\cos ^4x)\)

\(=2(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)

\(=2(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)

\(=-(\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x)=-(\sin ^2x+\cos ^2x)^2=-1^2=-1\)

là giá trị không phụ thuộc vào biến (đpcm)

-----------------------

\(B=\sin ^6x+\cos ^6x-2\sin ^4x-\cos ^4x+\sin ^2x\)

\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-2\sin ^4x-\cos ^4x+\sin ^2x\)

\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x-2\sin ^4x-\cos ^4x+\sin ^2x\)

\(=-\sin ^4x-\sin ^2x\cos ^2x+\sin ^2x=-\sin ^2x(\sin ^2x+\cos ^2x)+\sin ^2x\)

\(=-\sin ^2x+\sin ^2x=0\)

là giá trị không phụ thuộc vào biến (đpcm)

AH
Akai Haruma
Giáo viên
28 tháng 11 2019

\(C=(\sin ^4x+\cos ^4x-1)(\tan ^2x+\cot ^2x+2)=(\sin ^4x+\cos ^4x-1)(\frac{\sin ^2x}{\cos ^2x}+\frac{\cos ^2x}{\sin ^2x}+2)\)

\(=(\sin ^4x+\cos ^4x-1).\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=(\sin ^4x+\cos ^4x-1).\frac{(\sin ^2x+\cos ^2x)^2}{\sin ^2x\cos ^2x}\)

\(=(\sin ^4x+\cos ^4x-1).\frac{1}{\sin ^2x\cos ^2x}=\frac{(\sin ^2x)^2+(\cos ^2x)^2+2\sin ^2x\cos ^2x-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}\)

\(=\frac{(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{1-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{-2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=-2\)

là giá trị không phụ thuộc vào biến $x$

--------------------

\(D=\frac{1}{\cos ^6x}-\tan ^6x-\frac{\tan ^2x}{\cos ^2x}=\frac{1}{\cos ^6x}-\frac{\sin ^6x}{\cos ^6x}-\frac{\sin ^2x}{\cos ^4x}\)

\(=\frac{1-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{(\sin ^2x+\cos ^2x)^3-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)

\(=\frac{\sin ^6x+\cos ^6x+3\sin ^2x\cos ^2x(\sin ^2x+\cos ^2x)-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)

\(=\frac{\cos ^6x+3\sin ^2x\cos ^2x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{\cos ^4x+2\sin ^2x}{\cos ^4x}\)

\(=1+\frac{2\sin ^2x}{\cos ^4x}\)

Giá trị biểu thức này vẫn phụ thuộc vào $x$. Bạn xem lại đề.

\(=\left(sin^2x+cos^2x\right)^3-3sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2xcos^2x+sin^2x+cos^2x\)

\(=1+1=2\)

17 tháng 6 2018

à ra r. k cần giải nha m.n

NV
4 tháng 2 2021

\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)

\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)

\(A=sin^2x+cos^2x=1\)

\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)

\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)

\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)

\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)

\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)

NV
30 tháng 10 2019

\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)

\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)

\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)

\(=sin^2x+cos^2x+2=3\)

b/

\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)

\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)

\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)

\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)

\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)

\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)

\(=-2+3=1\)

4 tháng 9 2018

câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)

\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)

\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)

tới đây mk xin sử dụng kiến thức lớp 10 một chút

\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)

vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .

4 tháng 9 2018

câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)

câu 2 : https://hoc24.vn/hoi-dap/question/657072.html

câu 3 : https://hoc24.vn/hoi-dap/question/657069.html

câu 4 : https://hoc24.vn/hoi-dap/question/656635.html

câu 5 : https://hoc24.vn/hoi-dap/question/657071.html