Tìm x biết: (2x-1)(4x-16)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\dfrac{3x^3+6x^2-3x-5x^2-10x+5}{x^2+2x-1}=10\\ \Leftrightarrow\dfrac{3x\left(x^2+2x-1\right)-5\left(x^2+2x-1\right)}{x^2+2x-1}=10\\ \Leftrightarrow3x-5=10\Leftrightarrow3x=15\Leftrightarrow x=5\\ b,\Leftrightarrow\left(x^4+2x^2-4x^2-8\right):\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x^2-4\right)\left(x^2+2\right)\right]:\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\left(x^2+2\right)\right]:\left(x-2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x^2+2\right)=0\Leftrightarrow x=-2\left(x^2+2>0\right)\\ c,\Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-4\right)^2}=0\Leftrightarrow\dfrac{x}{x-4}=0\Leftrightarrow x=0\)
a) (x - 1)3 - x(x - 2)2 - (x - 2) = 0
<=> x3 - 2x2 + x - x2 + 2x - 1 - x3 + 4x2 - 4x - x + 2 = 0
<=> x2 - 2x + 1 = 0
<=> x2 - 2.x.1 + 12 = 0
<=> (x - 1)2 = 0
x - 1 = 0
x = 0 + 1
x = 1
=> x = 1
a)Ta có : \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)
\(=>\left(x-1\right)^3-\left(x^2-2x\right)\left(x-2\right)-\left(x-2\right)=0\)
\(=>\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+1\right)=0\)
\(=>\left(x-1\right)^3-\left(x-2\right)\left(x-1\right)^2=0\)
\(=>\left(x-1\right)^2\left(x-1-x+2\right)=0\)
\(=>\left(x-1\right)^2=0=>x-1=0=>x=1\)
Vậy x=1
b)(2x+5)(2x-7)-(4x+3)2=16
\(=>4x^2-4x-35-16x^2-24x-9-16=0\)
\(=>-\left(12x^2+28x+60\right)=0\)
\(=>12\left(x^2+\frac{7}{3}x+\frac{5}{3}\right)=0\)
\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)
Lại có \(\left(x+\frac{7}{6}\right)^2\ge0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}\ge\frac{11}{36}>0\)
Vậy ko có giá trị nào của x thỏa mãn đề bài
\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
a) \(\left(x-3\right)^2-4=0\)
\(\left(x-3\right)^2=0+4\)
\(\left(x-3\right)^2=4\)
\(\left(x-3\right)^2=\pm4\)
\(\left(x-3\right)^2=\pm2^2\)
\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
\(4x^2+12x+9-4x^2+1=22\)
\(12x+10=22\)
\(12x=22-10\)
\(12x=12\)
\(x=1\)
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
\(16x^2-9-16x^2+40x-25=16\)
\(-34+40x=16\)
\(40x=16+34\)
\(40x=50\)
\(x=\frac{50}{40}=\frac{5}{4}\)
d) \(x^3-9x^2+27x-27=-8\)
\(x^3-9x^2+27x-27+8=0\)
\(x^3-9x^2+27x-19=0\)
\(\left(x^2-8x+19\right)\left(x-1\right)=0\)
Vì \(\left(x^2-8x+19\right)>0\) nên:
\(x-1=0\)
\(x=1\)
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)
\(3x+1=2\)
\(3x=2-1\)
\(3x=1\)
\(x=\frac{1}{3}\)
a) \(x^2-2x=0\)
\(x\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
b) \(\left(3x-1\right)^2-16=0\)
\(\left(3x-1\right)^2-4^2=0\)
\(\left(3x-1-4\right)\left(3x-1+4\right)=0\)
\(\left(3x-5\right)\left(3x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-5=0\\3x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}\)
c) \(x^2-25x=0\)
\(x\left(x-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}}\)
d) \(\left(4x-1\right)^2-9=0\)
\(\left(4x-1\right)^2-3^2=0\)
\(\left(4x-1-3\right)\left(4x-1+3\right)=0\)
\(\left(4x-4\right)\left(4x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-4=0\\4x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}}\)
a) \(x^2-2x=0\)
\(x.\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
vậy..
b) \(\left(3x-1\right)^2-16=0\)
\(\left(3x-1\right)^2=16\)
\(\left(3x-1\right)^2=4^2=\left(-4\right)^2\)
\(\Rightarrow\orbr{\begin{cases}3x-1=4\\3x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}\)
vậy ...
c) \(x^2-25x=0\)
\(x.\left(x-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}}\)
vậy ....
d) \(\left(4x-1\right)^2-9=0\)
\(\left(4x-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow\orbr{\begin{cases}4x-1=3\\4x-1=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
vậy ...
a) x^3 - 64 - x^3 +6x = 2
(x^3 - x^3) + 6x = 2+64 quy tắc chuyển vế nhé bạn
6x = 66
x = 66:11
x = 6
Mấy câu này khá giống nhau nhé anh (câu 1 giống câu 4 và 5, cấu 2 giống câu 3) =)))
Câu 1: 2x - 7 + (x - 14) = 0
<=> 3x -21 = 0
<=> 3x = 21 => x = 7
Câu 2:
x2 - 6x = 0 <=> x.(x - 6) = 0 => \(\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
Chúc anh học tốt !!!
Câu 1, 2 có người làm rồi nên mik làm tiếp cho mấy câu tiếp. Cứ áp dụng A.B = 0 => A = 0 hoặc B = 0
3; ( x - 3 )( 16 - 4x ) = 0
=> x - 3 = 0 hoặc 16 - 4x = 0
=> x = 3 hoặc x = 4
Vậy x = 3 hoặc x = 4.
4; ( x - 3 ) - ( 16 - 4x ) = 0
=> x - 3 - 16 + 4x = 0
=> ( x + 4x ) - ( 3 + 16 ) = 0
=> 5x - 19 = 0
=> x = 19/5
Vậy x = 19/5
5; ( x + 3 ) + ( 16 - 4x ) = 0
=> x + 3 + 16 - 4x = 0
=> ( x - 4x ) + ( 16 + 3 ) = 0
=> 3x + 19 = 0
=> x = 19/3
Vậy x = 19/3
a, ( 3x - 1 )^2 - 3x( 3x + 2 ) = 0
<=>9x2-6x+1-9x2-6x=0
<=>-12x+1=0
<=>-12x=-1
<=>x=1/12
b, ( 2x + 3)^2 = 4x(x + 1 )
<=>(2x+3)2-4x(x+1)=0
<=>4x2+12x+9-4x2-4x=0
<=>8x+9=0
<=>8x=-9
<=>x=-9/8
c) vô fx gõ lại
d)x2-4x+4=16
<=>(x-2)2-16=0
<=>(x-2)2-42=0
<=>(x-2+4)(x-2-4)=0
<=>(x+2)(x-6)=0
<=>x+2=0 hoặc x-6=0
<=>x=-2 hoặc x=6
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
\(\left(2x-1\right)\left(4x-16\right)>0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x>4\\x< \frac{1}{2}\end{cases}}\)
Vậy x>4 hoac x<1/2
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}2x-1>0\\x-4>0\end{cases}}\\\hept{\begin{cases}2x-1< o\\x-4< 0\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x>\frac{1}{2}\\x>4\end{cases}}\\\hept{\begin{cases}x< \frac{1}{2}\\x< 4\end{cases}}\end{cases}}}\)thank nhieu