Cho a>0 : a^2+1/a^2=1.Cm a^5+1/a^5=125
làm hộ MK nha ,mai hok rồi!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge a^2+b^2+c^2\)
<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(ab+bc+ca\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(ab+bc+ca\right)\ge9\)
Ap dung BDT AM-GM ta co:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(ab+bc+ca\right)\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+2\left(ab+bc+ca\right)\)
\(=\frac{3}{abc}+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\)
\(\ge3\sqrt[3]{\frac{3}{abc}\left(ab+bc+ca\right)\left(ab+bc+ca\right)}\)
\(\ge3\sqrt[3]{\frac{3}{abc}.3abc\left(a+b+c\right)}=9\)
=> dpcm
\(8\left(a^4+b^4\right)+\dfrac{1}{ab}\ge4\left(a^2+b^2\right)^2+\dfrac{1}{ab}\)
\(\ge4\left(\dfrac{\left(a+b\right)^2}{2}\right)^2+\dfrac{4}{\left(a+b\right)^2}=1+4=5\)