K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2015

Áp dụng bđt : Với a>0 ; b>0 thì 1/b + 1/b >=4/(a+b) ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\ge4\)( vì 0 = < x + y <=1)

25 tháng 1 2018

Đặt : A = 1/x^2+xy + 1/y^2+xy

Có : A = 1/x.(x+y) + 1/y.(x+y) = 1/x + 1/y ( vì x+y = 1 )

Áp dụng bđt 1/a + 1/b >= 4/a+b với mọi a,b > 0 cho x,y > 0 thì :

A >= 4/x+y = 4/1 = 4

Dấu "=" xảy ra <=> x=y=1/2

=> ĐPCM

Tk mk nha

6 tháng 4 2020

Áp dụng bất đẳng thức Cô - si, ta có :

\(VT=\frac{1}{x^2+xy}+\frac{1}{y^2+xy}=\frac{1}{x^2+xy}+4\left(x^2+xy\right)+\frac{1}{y^2+xy}+4\left(y^2+xy\right)-4\left(x+y\right)^2\)

\(VT\ge2\sqrt{\frac{1}{x^2+xy}.4\left(x^2+xy\right)}+2\sqrt{\frac{1}{y^2+xy}+4\left(y^2+xy\right)}-4=4\)

=> đpcm

6 tháng 4 2018

ta chứng minh BĐT phụ sau:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)  cái này thì bạn tự cm nhé

Áp dụng BĐT trên

\(\Rightarrow\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}\)

Mà \(x+y\le1\Rightarrow\frac{4}{\left(x+y\right)^2}\ge\frac{4}{1}=4\)

\(\Leftrightarrow\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge4\left(đpcm\right)\)

6 tháng 4 2018

Sử dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức: (ko cần CM) Với a, b, x, y thuộc R thì \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Dấu "=" xảy ra <=> \(\frac{a}{x}=\frac{b}{y}\)

----------------------------------------------------------------------------------------------------------------------------------------------------------------

Áp dụng bất đăng thức Bu-nhi-a-cốp-xki dạng phân thức ta có:

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\) (1)

Ta lại có: x + y <= 1 => (x + y)2 <= 1

=> \(\frac{4}{\left(x+y\right)^2}\ge\frac{4}{1}=4\) (2)

Từ (1) và (2) => \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge4\)

=> đpcm

28 tháng 2 2018

Áp dụng BĐT Cô si cho 2 số dương a,b ta có \(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2.\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=>\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}\)

suy ra \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\).Áp dụng vào bài toán ta có :\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge\dfrac{4}{x^2+xy+y^2+xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (Do \(x+y\le1\))

28 tháng 2 2018

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge\dfrac{\left(1+1\right)^2}{x^2+2xy+y^2}=\dfrac{4}{\left(x+y\right)^2}\ge\dfrac{4}{1}=4\)

NV
19 tháng 3 2019

\(P=\frac{1}{\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=4+2\sqrt{3}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{3+\sqrt{6\sqrt{3}-9}}{6}\\y=\frac{3-\sqrt{6\sqrt{3}-9}}{6}\end{matrix}\right.\) và hoán vị

NV
19 tháng 3 2019

Cụ thể hơn:

\(\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}\)

\(=\frac{1^2}{1-3xy}+\frac{\left(\sqrt{3}\right)^2}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}\)

Dấu "=" xảy ra khi

\(\frac{1-3xy}{1}=\frac{3xy}{\sqrt{3}}\Rightarrow1-3xy=\sqrt{3}xy\)

17 tháng 10 2023

\(VT\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (vì \(x+y\le1\) )

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Ta có đpcm

23 tháng 10 2020

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)

Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)

Ta có : \(x+y\le1\)

=> \(\left(x+y\right)^2\le1\)

=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )

=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )

=> đpcm

Đẳng thức xảy ra <=> x = y = 1/2

17 tháng 7 2019

Bài 1:

Theo BĐT AM-GM có :$(x+y+1)(x^2+y^2)+\dfrac{4}{x+y}\geq (x+y+1).2xy+\dfrac{4}{x+y}=2(x+y+1)+\dfrac{4}{x+y}=(x+y)+(x+y)+\dfrac{4}{x+y}+2\geq 2\sqrt{xy}+2\sqrt{(x+y).\dfrac{4}{x+y}}+2=2+4+2=8$(đpcm)

Dấu \(=\) xảy ra khi \(x=y, xy=1\)\(x+y=2\) hay \(x=y=1\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 1:

Áp dụng BĐT Cô-si cho các số dương:

\(x^2+y^2\geq 2xy=2\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 2(x+y+1)+\frac{4}{x+y}(1)\)

Tiếp tục áp dụng BĐT Cô-si:

\(2(x+y+1)+\frac{4}{x+y}=(x+y+2)+[(x+y)+\frac{4}{x+y}]\)

\(\geq (2\sqrt{xy}+2)+2\sqrt{(x+y).\frac{4}{x+y}}=(2+2)+4=8(2)\)

Từ \((1);(2)\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 8\) (đpcm)

Dấu "=" xảy ra khi $x=y=1$

6 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

NM
6 tháng 1 2021

Xét \(\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{1-y}{y^3-1}+\frac{1-x}{x^3-1}=-\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}\)

\(=-\frac{x^2+y^2+x+y+2}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=-\frac{x^2+y^2+3}{x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1}\)

\(=-\frac{\left(x+y\right)^2-2xy+3}{x^2y^2+x^2+y^2+2xy+2}=-\frac{4-2xy}{x^2y^2+3}=\frac{2\left(xy-2\right)}{x^2y^2+3}\)

từ đó ta có đpcm