K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:
Vế đầu tiên:

Áp dụng BĐT AM-GM ta có:

\(xy+yz+xz=(x+y+z)(xy+yz+xz)\geq 3\sqrt[3]{xyz}.3\sqrt[3]{xy.yz.xz}=9xyz\)

\(9xyz\geq 2xyz\) với mọi $x,y,z\geq 0$

Do đó: \(xy+yz+xz\geq 2xyz\Rightarrow xy+yz+xz-2xyz\geq 0\)

Ta có đpcm.

Vế thứ hai

Áp dụng BĐT Schur bậc 3 ta có (hoặc bạn có thể cm BĐT quen thuộc này bằng AM-GM ngược dấu)

\(xyz\geq (x+y-z)(y+z-x)(z+x-y)\)

\(\Leftrightarrow xyz\geq (1-2z)(1-2x)(1-2y)\)

\(\Leftrightarrow xyz\geq 4(xy+yz+xz)-2(x+y+z)+1-8xyz=4(xy+yz+xz)-1-8xyz\)

\(\Rightarrow 9xyz\geq 4(xy+yz+xz)-1\Rightarrow xyz\geq \frac{4}{9}(xy+yz+xz)-\frac{1}{9}\)

Do đó:

\(xy+yz+xz-2xyz\leq xy+yz+xz-2\left(\frac{4}{9}(xy+yz+xz)-\frac{1}{9}\right)=\frac{xy+yz+xz+2}{9}(*)\)

Mà theo hệ quả quen thuộc của BĐT AM-GM:

\(1=(x+y+z)^2\geq 3(xy+yz+xz)\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow \frac{xy+yz+xz+2}{9}\leq \frac{\frac{1}{3}+2}{9}=\frac{7}{27}(**)\)

Từ \((*);(**)\Rightarrow xy+yz+xz-2xyz\leq \frac{7}{27}\) (đpcm)

16 tháng 8 2017

bình phuognw 2 vé rồi thu gọn là được

10 tháng 4 2017

đề nga sơn kaka , anh vừa làm xong , 3x+5y+3z=51+21

3.(x+y+z)=72-2y

x+y+z=72-2y/3

x+y+z bé hơn hoạc bằng 24

/x+y+z/^2 bé hơn hoạc bằng 24^2 , dấu bằng xảy ra khi nào ???????

NV
12 tháng 7 2021

\(P\le\dfrac{1}{4}\left(4x+3y+4z\right)^2\le\dfrac{1}{4}\left(4x+4y+4z\right)^2=4\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};0;\dfrac{1}{2}\right)\)

2 tháng 8 2021

thử x=1,y=2,z=3\(=>x^2+y^2+z^2=14>\dfrac{1}{2}\)(vô lí) sai đề

2 tháng 8 2021

bổ sung \(x+y+z=1\)

13 tháng 8 2016

lộn ko fai toán 6 đâu

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$

Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$

--------------

Tìm max:

$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$

Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$

$\Rightarrow A=36-2(xy+yz+xz)\leq 36$

Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.

NV
27 tháng 6 2021

BĐT bên trái rất đơn giản, chỉ cần áp dụng:

\(x^3+x^3+y^3\ge3x^2y\) ; tương tự và cộng lại và được

Ta chứng minh BĐT bên phải:

\(\Leftrightarrow x^4+y^4+z^4+2\ge2\left(x^3+y^3+z^3\right)=\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)

\(\Leftrightarrow2\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)

\(\Leftrightarrow\dfrac{1}{8}\left(x+y+z\right)^4\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)

Thật vậy, ta có:

\(\dfrac{1}{8}\left(x+y+z\right)^4=\dfrac{1}{8}\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]^2\)

\(\ge\dfrac{1}{8}.4\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)=\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(=x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)+xyz\left(x+y+z\right)\)

\(\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị