Chứng minh rằng :n*(2n-3)-2n*(n+1) chia hết cho 5 với mọi x thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath
ta có
\(\left(2n-1\right)^3-2n-1\)
\(=2n.\left(2n-2\right).\left(2n-2\right)\)
\(=8n.\left(n-1\right)^2⋮8\)
\(\left(2n+1\right)^3-(2n+1)\)
\(=\left(2n-2\right)\left(2n-2\right)2n\)
\(=8n\left(n-1\right)^2⋮8\)
A = -2n[n+1] + n[2n - 3]
= -2n2 - 2n + 2n2- 3n
= [-2n2 + 2n2] - 2n - 3n
= 0 - 2n - 3n
= -5n \(⋮5\)
A = -2n(n + 1) + n(2n + 3)
=> A = -2n2 -2n + 2n2 - 3n
=> A = -5n
Do: -5 chia hết cho 5 => -5n chia hết cho 5 với mọi n thuộc Z
Vậy A chia hết cho 5 với mọi n thuộc Z
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z
Dễ mà.
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
\(-5n⋮5\forall n\in Z\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\)
Chúc bạn học tốt.