K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

cứ thế mà nhân vào:

(x4-x3y+x2y2-xy3+y4)(x+y)=x5-x4y+x3y-x2y3+xy4+x4y-x3y2+x2y3-xy4+y5=x5+y5

1 tháng 2 2020

a) (x-y)(x4+x3y+x2y2+xy3+y4) = x(x4+x3y+x2y2+xy3+y4)-y(x4+x3y+x2y2+xy3+y4) =(x5+x4y+x3y2+x2y2+xy4)-(x4y+x3y2+x2y2+xy4+y5) = x5+x4y+x3y2+x2y2+xy4-x4y-x3y2-x2y2-xy4-y5 =x5-y5⇒Điều cần chứng minh

Các câu b d tương tự

2 tháng 2 2020

cảm ơn bạn nhiều

8 tháng 11 2021

\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)

Ta có VT:

 \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(=x.x^4+x.x^3y+x.x^2y^2+x.xy^3+x.y^4-y.x^4-y.x^3y-y.x^2y^2-y.xy^3-y.y^4\)

\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)

\(=x^5-y^5\)

VT=VP
Vậy:...

21 tháng 5 2018

Thực hiện phép nhân đa thức với đa thức ở vế trái

=> VT = VP (đpcm)

9 tháng 7 2019

Ta có

x 4   –   x 3 y   +   x 2 y 2   –   x y 3     =   x 4   +   x 2 y 2   –   ( x 3 y   +   x y 3 )     =   x 2 ( x 2   +   y 2 )   –   x y ( x 2   +   y 2 )     =   ( x 2   +   y 2 ) ( x 2   –   x y )   =   ( x 2   +   y 2 ) x ( x   –   y )     N ê n   ( x 4   –   x 3 y   +   x 2 y 2   –   x y 3 )   :   ( x 2   +   y 2 )     =   ( x 2   +   y 2 ) x ( x   –   y )   :   ( x 2   +   y 2 )   =   x ( x   –   y )

Đáp án cần chọn là : B

20 tháng 7 2017

số nào cũng đc miễn là x= y 

20 tháng 7 2017

x là một số bất kì nhé

23 tháng 11 2023

a) Để tính giá trị của biểu thức x^4 + y^4, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 Từ đó, ta có thể tính giá trị của biểu thức x^4 + y^4 theo a và b: x^4 + y^4 = (a^2 - 2b)^2 - 2(a - 2b)b b) Tương tự, để tính giá trị của biểu thức x^5 + y^5, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4) Từ đó, ta có thể tính giá trị của biểu thức x^5 + y^5 theo a và b: x^5 + y^5 = (a)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)

23 tháng 11 2023

ccc

Ta có: \(M=x^4-xy^3+xy^3-y^4-1\)

\(=x^4-y^4-1\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)-1\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)-1\)(1)

Thay x+y=0 vào biểu thức (1), ta được:

\(M=0-1=-1\)

Vậy: Khi x+y=0 thì M=-1

27 tháng 2 2021

`M=x^4-xy^3+xy^3-y^4-1`

`=x(x^3+y^3)-y^3(x+y)-1`

`=x(x+y)(x^2-xy+y^2)-0-1`(do `x+y=0`)

`=0-0-1`

`=-1`