Tìm số hữu tỉ x biết
(3*x+1/5)*(x-1/2)
(x-3/2)*(2*x+1)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, (3x + 1/5).(x - 1/2) = 0
<=> (3x + 1/5) = 0 hoặc (x - 1/2) = 0
<=> 3x = -1/5 hoặc x = 1/2
<=> x = -1/15 hoặc x = 1/2
\(a,\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\left(-5< 0\right)\Leftrightarrow x>3\\ b,\dfrac{3-x}{x^2+1}\ge0\Leftrightarrow3-x\ge0\left(x^2+1>0\right)\Leftrightarrow x\le3\\ c,\dfrac{\left(x-1\right)^2}{x-2}< 0\Leftrightarrow x-2< 0\left[\left(x-1\right)^2\ge0\right]\Leftrightarrow x< 2\)
a/ (x+1)(x-2) < 0 => \(\begin{cases}x+1>0\\x-2< 0\end{cases}\) hoặc \(\begin{cases}x+1< 0\\x-2>0\end{cases}\)
\(\Leftrightarrow-1< x< 2\)
b/ (x+1/2)(x-2) > 0 => \(\begin{cases}x+\frac{1}{2}>0\\x-2>0\end{cases}\) hoặc \(\begin{cases}x+\frac{1}{2}< 0\\x-2< 0\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x< -\frac{1}{2}\\x>2\end{array}\right.\)
a) \(\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
=> \(\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x+\frac{1}{3}=0\)
=> \(\left(\frac{2}{3}x-\frac{1}{2}x\right)+\left(-\frac{2}{5}+\frac{1}{3}\right)=0\)
=> \(\frac{1}{6}x-\frac{1}{15}=0\Rightarrow\frac{1}{6}x=\frac{1}{15}\Rightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{2}{5}\)
Vậy x = 2/5
b) \(\frac{1}{3}x+\frac{2}{5}\left(x+1\right)=0\)
=> \(\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
=> \(\frac{11}{15}x+\frac{2}{5}=0\Rightarrow\frac{11}{15}x=-\frac{2}{5}\)
=> \(x=\left(-\frac{2}{5}\right):\frac{11}{15}=\left(-\frac{2}{5}\right)\cdot\frac{15}{11}=-\frac{6}{11}\)
Vậy x = -6/11
c) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
=> \(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=> \(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)+\left(-\frac{1}{3}x-x\right)=5\)
=> \(\frac{2}{3}-\frac{4}{3}x=5\)
=> \(\frac{4}{3}x=-\frac{13}{3}\Rightarrow x=\left(-\frac{13}{3}\right):\frac{4}{3}=\left(-\frac{13}{3}\right)\cdot\frac{3}{4}=-\frac{13}{4}\)
Vậy x = -13/4
d) \(\frac{11}{5}-\left(\frac{7}{9}-x\right)\cdot\frac{3}{8}=\frac{61}{90}+\frac{x}{3}\)
=> \(\frac{11}{5}-\frac{3}{8}\left(\frac{7}{9}-x\right)=\frac{61}{90}+\frac{30x}{90}\)
=> \(\frac{11}{5}-\frac{7}{24}+\frac{3}{8}x=\frac{61+30x}{90}\)
=> \(\frac{229}{120}+\frac{3}{8}x=\frac{61+30x}{90}\)
=> \(\frac{229}{120}+\frac{3x}{8}=\frac{61+30x}{90}\)
=> \(\frac{229}{120}+\frac{45x}{120}=\frac{61+30x}{90}\)
=> \(\frac{229+45x}{120}=\frac{61+30x}{90}\)
=> \(\frac{3\left(229+45x\right)}{360}=\frac{4\left(61+30x\right)}{360}\)
=> \(3\left(229+45x\right)=4\left(61+30x\right)\)
=> \(687+135x=244+120x\)
=> \(687+135x-244-120x=0\)
=> \(\left(687-244\right)+\left(135x-120x\right)=0\)
=> \(443+15x=0\)
=> \(15x=-443\Rightarrow x=-\frac{443}{15}\)
Vậy x = -443/15
1/ Ta có \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
=> \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}\)
=> \(\orbr{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)thì \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
2 \(xy=\frac{x}{y}\Rightarrow y=\frac{x}{xy}=\frac{1}{y}\Rightarrow y^2=1\Rightarrow y=+-1\)
nếu \(y=1\Rightarrow x+y=xy=x+1=x\Rightarrow x-x=-1\Rightarrow0=-1\)vô lí (loại)
\(\Rightarrow y=-1\Rightarrow x+y=xy=x-1=-x\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)(thỏa mãn)
vậy \(x=\frac{1}{2};y=-1\)
( x - 3/2 ) ( 2x + 1 ) > 0
TH1 : cả 2 thừa số đều lớn hơn 0
\(\Rightarrow\hept{\begin{cases}x-\frac{3}{2}>0\\2x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{3}{2}\\x>-\frac{1}{2}\end{cases}\Rightarrow}x>\frac{3}{2}}\)
TH2 : cả 2 thừa số đều bé hơn 0
\(\Rightarrow\hept{\begin{cases}x-\frac{3}{2}< 0\\2x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{3}{2}\\x< -\frac{1}{2}\end{cases}\Rightarrow}x< -\frac{1}{2}}\)
Vậy,..........