Chứng minh rằng : Hiệu các bình phương số lẻ liên tiếp
thì chia hết cho 8.
MONG NHẬN ĐƯỢC SỰ GIÚP ĐỠ CỦA CÁC BẠN !!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8
sọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
=>(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy bình phương của 2 số lẻ liên tiếp chia hết cho 8
Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3
Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8
Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8
a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
ta có:
(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) gọi số lẽ đó là 2k+1
ta có:
(2k+1)2-1=(2k+1-1)(2k+1+1)
=2k.(2k+2)
=4k2+4k
Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2
=>4k2+4k chia hết cho 8
Vậy Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8
Tham khảo nhé bạn:
https://olm.vn/hoi-dap/detail/7431752799.html
~Std well~
#Mina
Gọi số lẻ thứ nhất là 2k - 1 .
Gọi số lẻ thứ 2 là 2k + 1 .
Ta có :
\(\left(2k-1\right)^2-\left(2k+1\right)^2\)
\(=\left(2k-1+2k+1\right)\left(2k-1-2k-1\right)\)
\(=4k.\left(-2\right)=-8k⋮8\)
Vậy ............................
Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z).
Hiệu bình phương của hai số lẻ đó bằng:
(2a + 1)2 – (2b + 1)2
= (4a2 + 4a + 1) – (4b2 + 4b + 1)
= (4a2 + 4a) – (4b2 + 4b)
= 4a(a + 1) – 4b(b + 1)
Tích của hai số tự nhiên liên tiếp luôn chia hết cho 2
⇒ a.(a + 1) ⋮ 2 và b.(b + 1) ⋮ 2.
⇒ 4a(a + 1) ⋮ 8 và 4b(b + 1) ⋮ 8
⇒ 4a(a + 1) – 4b(b + 1) ⋮ 8.
Vậy (2a + 1)2 – (2b + 1)2 chia hết cho 8 (đpcm).
Gọi hai số lẻ đó là 2k+1 và 2k+3 (k\(\in\)Z)
Ta có:
(2k+3)\(^2\)- (2k+1)\(^2\)= (2k+3+2k+1)(2k+3-2k-1)
= (4k+4).2
=8.(k+1)
Vì 8\(⋮\)8 \(\Rightarrow\)8.(k+1) \(⋮\)8
\(\Leftrightarrow\) (2k+3)\(^2\)-(2k+1)\(^2\)\(⋮\)8 (đpcm)
Gọi 2k+1 va 2p+1 là các số lẻ
=> Hiệu bình phương của chúng là :
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p)...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
=> ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8
=> đpcm
Cách 1:
Gọi 2 số lẻ liên tiếp là : 2k+1 ; 2k-1 (k là số tự nhiên; k>0)
Ta có: (2k+1)2−(2k−1)2(2k+1)2−(2k−1)2
= 4k2+4k+1−(4k2−4k+1)4k2+4k+1−(4k2−4k+1)
=8k⋮88k⋮8
\Rightarrow đpcm
Cách 2
Gọi số lẻ bất kỳ là : 2k+1
Xét (2k+1)2=4k2+4k+1=4k(k+1)+1(2k+1)2=4k2+4k+1=4k(k+1)+1
Mà k; k+1 là 2 số tự nhiên liên tiếp
Nên 4k(k+1)+1 chia 8 dư 1
Do vậy bình phương một số lẻ bất kỳ chia 8 dư 1
Ta mở rộng bài toán
Hiệu bình phương 2 số lẻ bất kỳ đều chia hết cho 8