cho x>0, y>0 thỏa mãn 1/x+1/y=1/2. tìm giá trị nhỏ nhất của A= \(\sqrt{x}+\sqrt{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{x}{\sqrt{x+y-x}}+\dfrac{y}{\sqrt{x+y-y}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\)
\(=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{\left(x+y\right)^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)
\(\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\left(1.\sqrt{x}+1.\sqrt{y}\right)}\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\sqrt{\left(1^2+1^2\right)\left(x+y\right)}}=\dfrac{1}{\dfrac{1}{2}\sqrt{2}}=\sqrt{2}\)
"=" khi x = y = 1/2
Ta có:
\(3=x+y+z\ge3\sqrt[3]{xyz}\)
\(\Leftrightarrow xyz\le1\)
Ta lại có:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{3}{\sqrt[6]{xyz}}\ge\frac{3}{1}=3\)
\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)
\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)
\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)
Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:
\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)
Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)
\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng
Tương tự: ...
\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)
\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị
Có thể tìm được min của P chứ không thể tính ra được giá trị cụ thể của P (biểu thức P vẫn phụ thuộc x;y, cụ thể sau khi rút gọn \(P=2\left(x+y\right)-1\))
Vì x>0; y>0
Nên áp dụng BĐT Cô-si ta có: \(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{x}.\frac{1}{y}}=2\sqrt{\frac{1}{xy}}\)
Mà \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
Nên \(\frac{1}{2}\ge2.\frac{1}{\sqrt{xy}}\Rightarrow\frac{1}{4}\ge\frac{1}{\sqrt{xy}}\)
\(\Rightarrow4\le\sqrt{xy}\) (C)
Ta có: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}\)
Thế (C) vào ta được: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{4}=4\)
Dấu "=" xảy ra <=> x = y
Vậy AMin = 4 khi và chỉ khi x = y
\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow\frac{1}{2}>=\frac{4}{x+y}\Rightarrow x+y>=8\left(1\right)\)(bđt svacxo)
\(\frac{1}{x}+\frac{1}{y}>=2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}=\frac{2}{\sqrt{xy}}\Rightarrow\frac{1}{2}>=\frac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}>=4\Rightarrow2\sqrt{xy}>=8\left(2\right)\)(bđt cosi)
từ \(\left(1\right);\left(2\right)\Rightarrow x+2\sqrt{xy}+y>=8+8=16\Rightarrow\left(\sqrt{x}+\sqrt{y}\right)^2>=16\)
mà \(\sqrt{x}>0;\sqrt{y}>0\Rightarrow\sqrt{x}+\sqrt{y}>=4\)
dấu = xảy ra khi x=y=4
vậy min A là 4 khi x=y=4