K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

Gọi d là UCLN(2a+5;a+1)

⇒2a+5;a+1

⇒2a+5;2a+2

⇒(2a+5)-(2a+2)

⇒3 ⋮d

⇒d=\(\left\{1;3\right\}\)

.............

Gọi d=ƯCLN(2a+5;2a+1)

=>2a+5-2a-1chia hết cho d

=>4 chia hết cho d

mà 2a+1 lẻ

nên d=1

=>PSTG

7 tháng 5 2018

Gọi d là ƯCLN (2a+1;4a+3)

\(\Rightarrow\hept{\begin{cases}2a+1⋮d\\4a+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2a+1\right)⋮d\\4a+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4a+2⋮d\\4a+3⋮d\end{cases}}}\)

\(\Rightarrow\left(4a+3\right)-\left(4a+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow a\in\left\{\varnothing\right\}\)

Vạy không có số tự nhiên a thỏa mãn

7 tháng 5 2018

Bài của bạn Miyuki Misaki đúng phần đầu rồi nhưng đến phần \(a\in\varnothing\)thì sai rồi. Mk sửa nhá!

\(d=1\Rightarrow\frac{2a+1}{4a+3}\)luôn là phân số tối giản.

Suy ra: \(\frac{2a+1}{4a+3}\)là phân số tối giản với mọi số tự nhiên a 

3 tháng 3 2016

1) Trướt hết mình xin ký hiệu lại: 
a/b tối giản <=> (a;b)=1 tức là ước chung lớn nhất của a, b là 1 
2) Ta sẽ chứng minh: 
Nếu (a;b)=1 thì (b;a-b)=1 (*) 
Bằng phản chứng: giả sử rằng (b;a-b)=k (k>1) khi đó ta có thể viết 
b = k.u (u nguyên) (**) 
a-b = k.v (v nguyên) (***) 
Từ (**)(***) suy ra a = k(u+v) và do đó (a;b) = (k(u+v); ku) = k >1 là trái giả thiết. 
Vậy (*) đã được chứng minh. 
3) a/b tối giản => a/b -1 = (a-b)/b tối giản (theo (*)) 
bằng quy nạp sẽ chứng minh được a/b - n tối giản. (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 8

Lời giải:

Vì $\frac{a}{b}$ là phân số chưa tối giản nên $a,b$ còn có thể chia hết cho chung một số lớn hơn $1$.

Gọi số đó là $d$.

Ta có: $a\vdots d; b\vdots d\Rightarrow 2a\vdots a; a-2b\vdots d$

$\Rightarrow \frac{2a}{a-2b}$ là phân số không tối giản.