Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d=ƯCLN(2a+5;2a+1)
=>2a+5-2a-1chia hết cho d
=>4 chia hết cho d
mà 2a+1 lẻ
nên d=1
=>PSTG
Gọi d là ƯCLN (2a+1;4a+3)
\(\Rightarrow\hept{\begin{cases}2a+1⋮d\\4a+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2a+1\right)⋮d\\4a+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4a+2⋮d\\4a+3⋮d\end{cases}}}\)
\(\Rightarrow\left(4a+3\right)-\left(4a+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow a\in\left\{\varnothing\right\}\)
Vạy không có số tự nhiên a thỏa mãn
Bài của bạn Miyuki Misaki đúng phần đầu rồi nhưng đến phần \(a\in\varnothing\)thì sai rồi. Mk sửa nhá!
\(d=1\Rightarrow\frac{2a+1}{4a+3}\)luôn là phân số tối giản.
Suy ra: \(\frac{2a+1}{4a+3}\)là phân số tối giản với mọi số tự nhiên a
Lời giải:
Vì $\frac{a}{b}$ là phân số chưa tối giản nên $a,b$ còn có thể chia hết cho chung một số lớn hơn $1$.
Gọi số đó là $d$.
Ta có: $a\vdots d; b\vdots d\Rightarrow 2a\vdots a; a-2b\vdots d$
$\Rightarrow \frac{2a}{a-2b}$ là phân số không tối giản.
Ta có: a/b chưa tối giản.Gọi (a;b)=d (d #1)
=>a chia hết cho d;b chia hết cho d
=>2a chia hết cho d; 2d chia hết cho d
=>2a chia hết cho d; (a-2b) chia hết cho d
=>d thuộc ƯC(2a;a-2b)
Mà d#1
=>(2a;a-2b)#1
=>2a/a-2b chưa tối giản (đpcm)
Gọi d là UCLN(2a+5;a+1)
⇒2a+5;a+1
⇒2a+5;2a+2
⇒(2a+5)-(2a+2)
⇒3 ⋮d
⇒d=\(\left\{1;3\right\}\)
.............