Tìm n thuộc N để :
A = \(\frac{n^5+1}{n^3+1}\) thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
A=\(\frac{n+3}{n+1}=1+\frac{2}{n+1}\)
để A thuộc Z => 2 chia hết cho n+1 => n+1 thuộc ước của 2: 1;-1;2;-2
n+1=2 => n=1
n+1=-2 => n=-3
n+1=1 => n=0
n+1=-1 => n=-2
.
A = \(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để A thuộc Z => \(\frac{2}{n+1}\)thuộc Z với n thuộc Z => n+1 thuộc ước của 2 vì n thuộc Z . Ta xét bảng
n+1 | 1 | -1 | 2 | -2 |
n | 0(TM) | -2(TM) | 1(TM) | -3(TM) |
Vậy để A thuộc Z thì n thuộc tập hợp 0 ; 1;-2; -3
\(A=\frac{n+1}{n-2}\\ Athu\text{ộc}Zkhin+1⋮n-2\\ =>n-2+3⋮n-2\\ =>3⋮n-2\)
=>n-2 thuộc Ư(3)={1;3;-1;-3}
=>n thuoc {3;5;1;-1}
b) A có GTLN khi n lớn nhất =>n=5
Câu b không chắc chắn
a, \(ĐK:\text{ }n-2\ne0\Leftrightarrow n\ne2\)
b, \(A=\frac{3}{n-2};\text{ }n=-2\)
\(\Rightarrow A=\frac{3}{-2-2}=\frac{3}{-4}\)
\(A=\frac{3}{n-2}\text{; }n=0\)
\(\Rightarrow A=\frac{3}{0-2}=\frac{3}{-2}\)
\(A=\frac{3}{n-2};\text{ }n=5\)
\(\Rightarrow A=\frac{3}{5-2}=\frac{3}{3}=1\)
c, \(A=\frac{3}{n-2}=1\Leftrightarrow n-2=\frac{3}{1}\)
\(\Rightarrow n-2=3\)
\(\Rightarrow n=3+2\)
\(\Rightarrow n=5\)
\(A=\frac{3}{n-2}=\frac{1}{2}\Leftrightarrow n-2=3:\frac{1}{2}\)
\(\Rightarrow n-2=6\)
\(\Rightarrow n=6+2\)
\(\Rightarrow n=8\)
d, \(A\inℤ\text{ }\Leftrightarrow\text{ }3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{1;3;-1;5\right\}\)
a)để A là phân số thì n-2 phải khác 0 =>n phải khác 2
b)+)n=-2
=>A=\(\frac{3}{-2-2}\)=\(\frac{3}{-4}\)
+)n=0
=>A=\(\frac{3}{0-2}=\frac{3}{-2}\)
+)n=5
=>A=\(\frac{3}{5-2}=\frac{3}{3}=1\)
c) theo như kết quả phần b thì để A=1 thì n phải =5
để A=\(\frac{1}{2}\)thì \(\frac{3}{n-2}=\frac{1}{2}\)=>\(\frac{3}{n-2}=\frac{3}{6}\)=>n-2=6=>n=6+2=>n=8
để A thuộc Z thì n-2 phải <0 =>n phải bé hơn 2 để n thuộc Z
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
Đảo câu b lên làm trước câu a nhé.
Để A thuộc Z
=> n-1 chia hết cho n+4
=> n+4-5 chia hết cho n+4
Vì n+4 chia hết cho n+4
=> -5 chia hết cho n+4
=> n+4 thuộc Ư(-5)
n+4 | n |
1 | -3 |
-1 | -5 |
5 | 1 |
-5 | -9 |
KL: n \(\in\){-3; -5; 1; -9}
a, Để A là phân số => n \(\notin\){-3; -5; 1; -9}
a) A thuộc Z
=> n + 1 chia hết cho n - 3
n - 3 + 4 chia hết cho n - 3
4 chia hết cho n - 3
n - 3 thuộc U(4) = {-4 ; -2 ; -1 ; 1 ; 2; 4}
n thuộc {-1 ; 1 ; 2 ; 4 ; 5 ; 7}
Tớ nghĩ là cộng vì dấu ''+'' nằm dưới dấu ''='' mà, chắc là quên ấn nút ''Shift'' ấy mà!